Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
PLoS Pathog ; 12(8): e1005825, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27556400

RESUMEN

The nuclear lamina lines the inner nuclear membrane providing a structural framework for the nucleus. Cellular processes, such as nuclear envelope breakdown during mitosis or nuclear export of large ribonucleoprotein complexes, are functionally linked to the disassembly of the nuclear lamina. In general, lamina disassembly is mediated by phosphorylation, but the precise molecular mechanism is still not completely understood. Recently, we suggested a novel mechanism for lamina disassembly during the nuclear egress of herpesviral capsids which involves the cellular isomerase Pin1. In this study, we focused on mechanistic details of herpesviral nuclear replication to demonstrate the general importance of Pin1 for lamina disassembly. In particular, Ser22-specific lamin phosphorylation consistently generates a Pin1-binding motif in cells infected with human and animal alpha-, beta-, and gammaherpesviruses. Using nuclear magnetic resonance spectroscopy, we showed that binding of Pin1 to a synthetic lamin peptide induces its cis/trans isomerization in vitro. A detailed bioinformatic evaluation strongly suggests that this structural conversion induces large-scale secondary structural changes in the lamin N-terminus. Thus, we concluded that a Pin1-induced conformational change of lamins may represent the molecular trigger responsible for lamina disassembly. Consistent with this concept, pharmacological inhibition of Pin1 activity blocked lamina disassembly in herpesvirus-infected fibroblasts and consequently impaired virus replication. In addition, a phospho-mimetic Ser22Glu lamin mutant was still able to form a regular lamina structure and overexpression of a Ser22-phosphorylating kinase did not induce lamina disassembly in Pin1 knockout cells. Intriguingly, this was observed in absence of herpesvirus infection proposing a broader importance of Pin1 for lamina constitution. Thus, our results suggest a functional model of similar events leading to disassembly of the nuclear lamina in response to herpesviral or inherent cellular stimuli. In essence, Pin1 represents a regulatory effector of lamina disassembly that promotes the nuclear pore-independent egress of herpesviral capsids.


Asunto(s)
Infecciones por Herpesviridae/virología , Peptidilprolil Isomerasa de Interacción con NIMA/metabolismo , Lámina Nuclear/virología , Replicación Viral/fisiología , Western Blotting , Cápside/metabolismo , Cápside/virología , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Herpesviridae , Infecciones por Herpesviridae/metabolismo , Humanos , Laminas , Espectroscopía de Resonancia Magnética , Lámina Nuclear/metabolismo , Fosforilación
2.
J Gen Virol ; 97(7): 1676-1685, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27145986

RESUMEN

Nuclear egress of herpesvirus capsids through the nuclear envelope is mediated by the multimeric nuclear egress complex (NEC). The human cytomegalovirus (HCMV) core NEC is defined by an interaction between the membrane-anchored pUL50 and its nuclear co-factor pUL53, tightly associated through heterodimeric corecruitment to the nuclear envelope. Cellular proteins, such as p32/gC1qR, emerin and protein kinase C (PKC), are recruited by direct interaction with pUL50 for the multimeric extension of the NEC. As a functionally important event, the recruitment of both viral and cellular protein kinases leads to site-specific lamin phosphorylation and nuclear lamina disassembly. In this study, interaction domains within pUL50 for its binding partners were defined by co-immunoprecipitation. The interaction domain for pUL53 is located within the pUL50 N-terminus (residues 10-169), interaction domains for p32/gC1qR (100-358) and PKC (100-280) overlap in the central part of pUL50, and the interaction domain for emerin is located in the C-terminus (265-397). Moreover, expression and formation of core NEC proteins at the nuclear rim were consistently detected in cells permissive for productive HCMV replication, including two trophoblast-cell lines. Importantly, regular nuclear-rim formation of the core NEC was blocked by inhibition of cyclin-dependent kinase (CDK) activity. In relation to the recently published crystal structure of the HCMV core NEC, our findings result in a refined view of NEC assembly. In particular, we suggest that CDKs may play an important regulatory role in NEC formation during HCMV replication.


Asunto(s)
Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Citomegalovirus/metabolismo , Membrana Nuclear/virología , Proteínas Virales/metabolismo , Liberación del Virus/fisiología , Replicación Viral/fisiología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Células HEK293 , Células HeLa , Humanos , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Lámina Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Fosforilación , Mapas de Interacción de Proteínas , Proteína Quinasa C-alfa/metabolismo , Estructura Terciaria de Proteína
3.
Antimicrob Agents Chemother ; 59(4): 2062-71, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25624324

RESUMEN

Protein kinases represent central and multifunctional regulators of a balanced virus-host interaction. Cyclin-dependent protein kinase 7 (CDK7) plays crucial regulatory roles in cell cycle and transcription, both connected with the replication of many viruses. Previously, we developed a CDK7 inhibitor, LDC4297, that inhibits CDK7 in vitro in the nano-picomolar range. Novel data from a kinome-wide evaluation (>330 kinases profiled in vitro) demonstrate a kinase selectivity. Importantly, we provide first evidence for the antiviral potential of the CDK7 inhibitor LDC4297, i.e., in exerting a block of the replication of human cytomegalovirus (HCMV) in primary human fibroblasts at nanomolar concentrations (50% effective concentration, 24.5 ± 1.3 nM). As a unique feature compared to approved antiherpesviral drugs, inhibition occurred already at the immediate-early level of HCMV gene expression. The mode of antiviral action was considered multifaceted since CDK7-regulated cellular factors that are supportive of HCMV replication were substantially affected by the inhibitors. An effect of LDC4297 was identified in the interference with HCMV-driven inactivation of retinoblastoma protein (Rb), a regulatory step generally considered a hallmark of herpesviral replication. In line with this finding, a broad inhibitory activity of the drug could be demonstrated against a selection of human and animal herpesviruses and adenoviruses, whereas other viruses only showed intermediate drug sensitivity. Summarized, the CDK7 inhibitor LDC4297 is a promising candidate for further antiviral drug development, possibly offering new options for a comprehensive approach to antiviral therapy.


Asunto(s)
Antivirales/farmacología , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Pirazoles/farmacología , Triazinas/farmacología , Adenoviridae/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Citomegalovirus/efectos de los fármacos , Fibroblastos/virología , Regulación Viral de la Expresión Génica/efectos de los fármacos , Herpesviridae/efectos de los fármacos , Humanos , Ratones , Fosforilación , Replicación Viral/efectos de los fármacos
5.
ACS Omega ; 2(6): 2422-2431, 2017 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-30023664

RESUMEN

Many quinazoline derivatives have been synthesized over the last few decades with great pharmacological potential, such as antimalarial, anti-inflammatory, antimicrobial, anticancer, and antiviral. But so far, no quinazoline-artemisinin hybrids have been reported in the literature. In the present study, five novel quinazoline-artemisinin hybrids were synthesized and evaluated for their in vitro biological activity against malarial parasites (Plasmodium falciparum 3D7), leukemia cells (CCRF-CEM and CEM/ADR5000), and human cytomegalovirus. Remarkably, hybrid 9 (EC50 = 1.4 nM), the most active antimalarial compound of this study, was not only more potent than artesunic acid (EC50 = 9.7 nM) but at the same time more active than the clinically used drugs dihydroartemisinin (EC50 = 2.4 nM) and chloroquine (EC50 = 9.8 nM). Furthermore, hybrids 9 and 10 were the most potent compounds with regard to anticytomegaloviral activity (EC50 = 0.15-0.21 µM). They were able to outperform ganciclovir (EC50 = 2.6 µM), which is the relevant standard drug of antiviral therapy, by a factor of 12-17. Moreover, we identified a new highly active quinazoline derivative, compound 14, that is most effective in suppressing cytomegalovirus replication with an EC50 value in the nanomolar range (EC50 = 50 nM). In addition, hybrid 9 exhibited an antileukemia effect similar to that of artesunic acid, with EC50 values in the low micromolar range, and was 45 times more active toward the multidrug-resistant CEM/ADR5000 cells (EC50 = 0.5 µM) than the standard drug doxorubicin.

6.
Nat Commun ; 8: 15071, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28462939

RESUMEN

Most of the known approved drugs comprise functionalized heterocyclic compounds as subunits. Among them, non-fluorescent quinazolines with four different substitution patterns are found in a variety of clinically used pharmaceuticals, while 4,5,7,8-substituted quinazolines and those displaying their own specific fluorescence, favourable for cellular uptake visualization, have not been described so far. Here we report the development of a one-pot synthetic strategy to access these 4,5,7,8-substituted quinazolines, which are fluorescent and feature strong antiviral properties (EC50 down to 0.6±0.1 µM) against human cytomegalovirus (HCMV). Merging multistep domino processes in one-pot under fully metal-free conditions leads to sustainable, maximum efficient and high-yielding organic synthesis. Furthermore, generation of artesunic acid-quinazoline hybrids and their application against HCMV (EC50 down to 0.1±0.0 µM) is demonstrated. Fluorescence of new antiviral hybrids and quinazolines has potential applications in molecular imaging in drug development and mechanistic studies, avoiding requirement of linkage to external fluorescent markers.

7.
Antiviral Res ; 143: 113-121, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28400201

RESUMEN

Infection with human cytomegalovirus (HCMV) is a serious medical problem, particularly in immunocompromised individuals and neonates. The success of (val)ganciclovir therapy is hampered by low drug compatibility and induction of viral resistance. A novel strategy of antiviral treatment is based on the exploitation of cell-directed signaling, e. g. pathways with a known relevance for carcinogenesis and tumor drug development. Here we describe a principle for putative antiviral drugs based on targeting dual-specificity tyrosine phosphorylation-regulated kinases (DYRKs). DYRKs constitute an evolutionarily conserved family of protein kinases with key roles in the control of cell proliferation and differentiation. Members of the DYRK family are capable of phosphorylating a number of substrate proteins, including regulators of the cell cycle, e.g. DYRK1B can induce cell cycle arrest, a critical step for the regulation of HCMV replication. Here we provide first evidence for a critical role of DYRKs during viral replication and the high antiviral potential of DYRK inhibitors (SC84227, SC97202 and SC97208, Harmine and AZ-191). Using established replication assays for laboratory and clinically relevant strains of HCMV, concentration-dependent profiles of inhibition were obtained. Mean inhibitory concentrations (EC50) of 0.98 ± 0.08 µM/SC84227, 0.60 ± 0.02 µM/SC97202, 6.26 ± 1.64 µM/SC97208, 0.71 ± 0.019 µM/Harmine and 0.63 ± 0.23 µM/AZ-191 were determined with HCMV strain AD169-GFP for the infection of primary human fibroblasts. A first analysis of the mode of antiviral action suggested a block of viral replication at the early-late stage of HCMV gene expression. Moreover, rhesus macaque cytomegalovirus (RhCMV), varicella-zoster virus (VZV) and herpes simplex virus (HSV-1) showed a similarly high sensitivity to these compounds. Thus, we conclude that DYRK signaling represents a promising target pathway for the development of novel anti-herpesviral strategies.


Asunto(s)
Antivirales/antagonistas & inhibidores , Herpesviridae/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/efectos de los fármacos , Proteínas Tirosina Quinasas/efectos de los fármacos , Animales , Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Citomegalovirus/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas , Fibroblastos/virología , Ganciclovir/antagonistas & inhibidores , Técnicas de Silenciamiento del Gen , Harmina/antagonistas & inhibidores , Herpesvirus Humano 1/efectos de los fármacos , Herpesvirus Humano 3/efectos de los fármacos , Humanos , Macaca mulatta/virología , Pruebas de Sensibilidad Microbiana , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Sensibilidad y Especificidad , Transducción de Señal/efectos de los fármacos , Células Vero , Replicación Viral/efectos de los fármacos , Quinasas DyrK
8.
Eur J Med Chem ; 97: 164-72, 2015 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-25965779

RESUMEN

In our ongoing search for highly active hybrid molecules exceeding their parent compounds in anticancer, antimalaria as well as antiviral activity and being an alternative to the standard drugs, we present the synthesis and biological investigations of 2nd generation 1,2,4-trioxane-ferrocene hybrids. In vitro tests against the CCRF-CEM leukemia cell line revealed di-1,2,4-trioxane-ferrocene hybrid 7 as the most active compound (IC50 of 0.01 µM). Regarding the activity against the multidrug resistant subline CEM/ADR5000, 1,2,4-trioxane-ferrocene hybrid 5 showed a remarkable activity (IC50 of 0.53 µM). Contrary to the antimalaria activity of hybrids 4-8 against Plasmodium falciparum 3D7 strain with slightly higher IC50 values (between 7.2 and 30.2 nM) than that of their parent compound DHA, hybrids 5-7 possessed very promising activity (IC50 values lower than 0.5 µM) against human cytomegalovirus (HCMV). The application of 1,2,4-trioxane-ferrocene hybrids against HCMV is unprecedented and demonstrated here for the first time.


Asunto(s)
Artemisininas/síntesis química , Compuestos Ferrosos/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Compuestos Heterocíclicos/síntesis química , Plasmodium falciparum/efectos de los fármacos , Artemisininas/química , Artemisininas/farmacología , Línea Celular Tumoral , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Compuestos Ferrosos/química , Compuestos Ferrosos/farmacología , Compuestos Heterocíclicos/química , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Concentración 50 Inhibidora , Leucemia/tratamiento farmacológico , Metalocenos
9.
Antiviral Res ; 124: 101-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26546752

RESUMEN

Infection with human cytomegalovirus (HCMV) is a serious medical problem, particularly in immunocompromised individuals and neonates. The success of standard antiviral therapy is hampered by low drug compatibility and induction of viral resistance. A novel strategy is based on the exploitation of cell-directed signaling inhibitors. The broad antiinfective drug artesunate (ART) offers additional therapeutic options such as oral bioavailability and low levels of toxic side-effects. Here, novel ART-derived compounds including dimers and trimers were synthesized showing further improvements over the parental drug. Antiviral activity and mechanistic aspects were determined leading to the following statements: (i) ART exerts antiviral activity towards human and animal herpesviruses, (ii) no induction of ART-resistant HCMV mutants occurred in vitro, (iii) chemically modified derivatives of ART showed strongly enhanced anti-HCMV efficacy, (iv) NF-κB reporter constructs, upregulated during HCMV replication, could be partially blocked by ART treatment, (v) ART activity analyzed in stable reporter cell clones indicated an inhibition of stimulated NF-κB but not CREB pathway, (vi) solid-phase immobilized ART was able to bind to NF-κB RelA/p65, and (vii) peptides within NF-κB RelA/p65 represent candidates of ART binding as analyzed by in silico docking and mass spectrometry. These novel findings open new prospects for the future medical use of ART and ART-related drug candidates.


Asunto(s)
Artemisininas/farmacología , Citomegalovirus/efectos de los fármacos , Citomegalovirus/metabolismo , FN-kappa B/metabolismo , Factor de Transcripción ReIA/metabolismo , Antivirales/química , Antivirales/farmacología , Artemisininas/química , Artesunato , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citomegalovirus/genética , Farmacorresistencia Viral , Células HEK293 , Herpesviridae/efectos de los fármacos , Humanos , Mutación , FN-kappa B/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Activación Transcripcional , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda