RESUMEN
A major factor limiting the development of somatic cell nuclear transfer (SCNT) technology is the low success rate of pregnancy, mainly due to placental abnormalities disrupting the maternal-fetal balance during pregnancy. Although there has been some progress in research on the abnormal enlargement of cloned bovine placenta, there are still few reports on the direct regulatory mechanisms of enlarged cloned bovine placenta tissue. In this study, we conducted sequencing and analysis of transcriptomics, proteomics, and metabolomics of placental tissues from SCNT cattle (n = 3) and control (CON) cattle (n = 3). The omics analysis results indicate abnormalities in biological functions such as protein digestion and absorption, glycolysis/gluconeogenesis, the regulation of lipid breakdown, as well as glycerolipid metabolism, and arginine and proline metabolism in the placenta of SCNT cattle. Integrating these analyses highlights critical metabolic pathways affecting SCNT cattle placenta, including choline metabolism and unsaturated fatty acid biosynthesis. These findings suggest that aberrant expressions of genes, proteins, and metabolites in SCNT placentas affect key pathways in protein digestion, growth hormone function, and energy metabolism. Our results suggest that abnormal protein synthesis, growth hormone function, and energy metabolism in SCNT bovine placental tissues contribute to placental hypertrophy. These findings offer valuable insights for further investigation into the mechanisms underlying SCNT bovine placental abnormalities.
Asunto(s)
Metabolómica , Técnicas de Transferencia Nuclear , Placenta , Proteómica , Transcriptoma , Animales , Bovinos , Femenino , Embarazo , Placenta/metabolismo , Proteómica/métodos , Metabolómica/métodos , Clonación de Organismos , Perfilación de la Expresión GénicaRESUMEN
The myostatin (MSTN) gene also regulates the developmental balance of skeletal muscle after birth, and has long been linked to age-related muscle wasting. Many rodent studies have shown a correlation between MSTN and age-related diseases. It is unclear how MSTN and age-associated muscle loss in other animals are related. In this study, we utilized MSTN gene-edited bovine skeletal muscle cells to investigate the mechanisms relating to MSTN and muscle cell senescence. The expression of MSTN was higher in older individuals than in younger individuals. We obtained consecutively passaged senescent cells and performed senescence index assays and transcriptome sequencing. We found that senescence hallmarks and the senescence-associated secretory phenotype (SASP) were decreased in long-term-cultured myostatin inactivated (MT-KO) bovine skeletal muscle cells (bSMCs). Using cell signaling profiling, MSTN was shown to regulate the SASP, predominantly through the cycle GMP-AMP synthase-stimulator of antiviral genes (cGAS-STING) pathway. An in-depth investigation by chromatin immunoprecipitation (ChIP) analysis revealed that MSTN influenced three prime repair exonuclease 1 (TREX1) expression through the SMAD2/3 complex. The downregulation of MSTN contributed to the activation of the MSTN-SMAD2/3-TREX1 signaling axis, influencing the secretion of SASP, and consequently delaying the senescence of bSMCs. This study provided valuable new insight into the role of MSTN in cell senescence in large animals.
Asunto(s)
Senescencia Celular , Miostatina , Animales , Miostatina/genética , Miostatina/metabolismo , Bovinos , Senescencia Celular/genética , Exodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Transducción de Señal , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Células CultivadasRESUMEN
Myostatin (MSTN), a growth and differentiation factor, plays an important role in regulating skeletal muscle growth and development. MSTN knockout (MSTN-KO) leads to skeletal muscle hypertrophy and regulates metabolic homeostasis. Moreover, MSTN is also detected in smooth muscle. However, the effect of MSTN-KO on smooth muscle has not yet been reported. In this study, combined metabolome and transcriptome analyses were performed to investigate the metabolic and transcriptional profiling in esophageal smooth muscles of MSTN-KO Chinese Luxi Yellow cattle (n = 5, 24 months, average body weight 608.5 ± 17.62 kg) and wild-type (WT) Chinese Luxi Yellow cattle (n = 5, 24 months, average body weight 528.25 ± 11.03 kg). The transcriptome was sequenced using the Illumina Novaseq™ 6000 sequence platform. In total, 337 significantly up- and 129 significantly down-regulated genes were detected in the MSTN-KO cattle compared with the WT Chinese Luxi Yellow cattle. Functional enrichment analysis indicated that the DEGs were mainly enriched in 67 signaling pathways, including cell adhesion molecules, tight junction, and the cGMP-PKG signaling pathway. Metabolomics analysis by liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified 130 differential metabolites between the groups, with 56 up-regulated and 74 down-regulated in MSTN knockout cattle compared with WT cattle. Differential metabolites were significantly enriched in 31 pathways, including glycerophospholipid metabolism, histidine metabolism, glutathione metabolism, and purine metabolism. Transcriptome and metabolome were combined to analyze the significant enrichment pathways, and there were three metabolically related pathways, including histidine metabolism, purine metabolism, and arginine and proline metabolism. These results provide important references for in-depth research on the effect of MSTN knockout on smooth muscle.
Asunto(s)
Miostatina , Transcriptoma , Animales , Bovinos , Miostatina/genética , Miostatina/metabolismo , Cromatografía Liquida , Histidina/metabolismo , Espectrometría de Masas en Tándem , Músculo Liso/metabolismo , Metaboloma , Purinas/metabolismo , Músculo Esquelético/metabolismoRESUMEN
Somatic cell nuclear transfer (SCNT) can reprogram differentiated somatic cells to produce individual animals, thus having advantages in animal breeding and chromatin reprogramming. Interspecies SCNT (iSCNT) provides extreme cases of reprogramming failure that can be used to understand the basic biological mechanism of genome reprogramming. It is important to understand the possible mechanisms for the failure of zygotic genome activation (ZGA) in iSCNT embryos in order to improve the efficiency of SCNT embryos. In the present study, we compared the development of bovine-bovine (B-B), ovine-ovine (O-O) SCNT, and ovine-bovine (O-B) iSCNT embryos and found that a developmental block existed in the 8-cell stage in O-B iSCNT embryos. RNA sequencing and q-PCR analysis revealed that the large ribosomal subunit genes (RPL) or the small ribosomal subunit genes (RPS) were expressed at lower levels in the O-B iSCNT embryos. The nucleolin (C23) gene that regulates the ribosomal subunit generation was transcribed at a lower level during embryonic development in O-B iSCNT embryos. In addition, the nucleolin exhibited a clear circular-ring structure in B-B 8-cell stage embryos, whereas this was shell-like or dot-like in the O-B embryos. Furthermore, overexpression of C23 could increase the blastocyst rate of both SCNT and iSCNT embryos and partly rectify the ring-like nucleolin structure and the expression of ribosomal subunit related genes were upregulation, while knockdown of C23 increased the shell-like nucleolin-structure in B-B cloned embryos and downregulated the expression of ribosomal subunit related genes. These results implied that abnormal C23 and ribosome subunit gene expression would lead to the developmental block of iSCNT embryos and ZGA failure. Overexpression of the C23 gene could partly improve the blastocyst development and facilitate the nucleolin structure in bovine preimplantation SCNT embryos.
Asunto(s)
Desarrollo Embrionario , Fibroblastos/citología , Técnicas de Transferencia Nuclear , Fosfoproteínas/fisiología , Proteínas de Unión al ARN/fisiología , Animales , Bovinos , Células Cultivadas , Embrión de Mamíferos , Oocitos , Ovinos , NucleolinaRESUMEN
Cloned animals generated by somatic cell nuclear transfer (SCNT) have been reported for many years; however, SCNT is extremely inefficient, and zygotic genome activation (ZGA) is required for SCNT-mediated somatic cell reprogramming. To identify candidate factors that facilitate ZGA in SCNT-mediated reprogramming, we performed siRNA-repressor and mRNA-inducer screenings, which reveal Dux, Dppa2, and Dppa4 as key factors enhancing ZGA in SCNT. We show that direct injection of ZGA inducers has no significant effect on SCNT blastocyst formation; however, following the establishment of an inducible Dux transgenic mouse model, we demonstrate that transient overexpression of Dux not only improves SCNT efficiency but also increases that of chemically induced pluripotent stem cell reprogramming. Moreover, transcriptome profiling reveals that Dux-treated SCNT embryos are similar to fertilized embryos. Furthermore, transient overexpression of Dux combined with inactivation of DNA methyltransferases (Dnmts) further promotes the full embryonic development of SCNT-derived animals. These findings enhance our understanding of ZGA-regulator function in somatic reprogramming.
Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Blastocisto , Reprogramación Celular/genética , Embrión de Mamíferos , Desarrollo Embrionario/genética , Genoma , Ratones , Proteínas Nucleares , Técnicas de Transferencia Nuclear , Factores de Transcripción/genética , CigotoRESUMEN
The YMR253C open reading frame encodes a membrane protein that is highly expressed in NaCl-resistant Saccharomyces cerevisiae mutants. Whether it mediates NaCl tolerance is unclear. By knocking out YMR253C in S. cerevisiae, we found that the salt tolerance of yeast was reduced, the integrity of the cell wall was impaired, and cell death was induced; transcriptome analysis further revealed that YMR253C gene knockout mediates significant changes of 1291 genes, and YMR253C mediates the regulation of MAPK signal pathways. Therefore, the transmembrane protein YMR253C may regulate the MAPK signaling pathway to regulate the salt stress of S. cerevisiae.
Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Perfilación de la Expresión Génica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Tolerancia a la Sal/genética , Transducción de SeñalRESUMEN
Myostatin (Mstn) is a major negative regulator of skeletal muscle mass and initiates multiple metabolic changes. The deletion of the Mstn gene in mice leads to reduced mitochondrial functions. However, the underlying regulatory mechanisms remain unclear. In this study, we used CRISPR/Cas9 to generate myostatin-knockout (Mstn-KO) mice via pronuclear microinjection. Mstn-KO mice exhibited significantly larger skeletal muscles. Meanwhile, Mstn knockout regulated the organ weights of mice. Moreover, we found that Mstn knockout reduced the basal metabolic rate, muscle adenosine triphosphate (ATP) synthesis, activities of mitochondrial respiration chain complexes, tricarboxylic acid cycle (TCA) cycle, and thermogenesis. Mechanistically, expressions of silent information regulator 1 (SIRT1) and phosphorylated adenosine monophosphate-activated protein kinase (pAMPK) were down-regulated, while peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) acetylation modification increased in the Mstn-KO mice. Skeletal muscle cells from Mstn-KO and WT were treated with AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR), and the AMPK inhibitor Compound C, respectively. Compared with the wild-type (WT) group, Compound C treatment further down-regulated the expression or activity of pAMPK, SIRT1, citrate synthase (CS), isocitrate dehydrogenase (ICDHm), and α-ketoglutarate acid dehydrogenase (α-KGDH) in Mstn-KO mice, while Mstn knockout inhibited the AICAR activation effect. Therefore, Mstn knockout affects mitochondrial function by inhibiting the AMPK/SIRT1/PGC1α signaling pathway. The present study reveals a new mechanism for Mstn knockout in regulating energy homeostasis.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Miostatina , Animales , Ratones , Aminoimidazol Carboxamida/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Miostatina/genética , Miostatina/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismoRESUMEN
Inter-species somatic cell nuclear transfer (iSCNT) is significant in the study of biological problems such as embryonic genome activation and the mitochondrial function of embryos. Here, we used iSCNT as a model to determine whether abnormal embryo genome activation was caused by mitochondrial dysfunction. First, we found the ovine-bovine iSCNT embryos were developmentally blocked at the 8-cell stage. The reactive oxygen species level, mitochondrial membrane potential, and ATP level in ovine-bovine cloned embryos were significantly different from both bovine-bovine and IVF 8-cell stage embryos. RNA sequencing and q-PCR analysis revealed that mitochondrial transport, mitochondrial translational initiation, mitochondrial large ribosomal subunit, and mitochondrial outer membrane genes were abnormally expressed in the ovine-bovine embryos, and the mitochondrial outer membrane and mitochondrial ribosome large subunit genes, mitochondrial fusion gene 1, and ATPase Na+/K+ transporting subunit beta 3 gene were expressed at lower levels in the ovine-bovine cloned embryos. Furthermore, we found that overexpression and knockdown of Mfn1 significantly affected mitochondrial fusion and subsequent biological functions such as production of ATP, mitochondrial membrane potential, reactive oxygen species and gene expressions in cloned embryos. These findings enhance our understanding of the mechanism by which the Mfn1 gene regulates embryonic development and embryonic genome activation events.
Asunto(s)
Núcleo Celular , Embrión de Mamíferos , Adenosina Trifosfato/metabolismo , Animales , Bovinos , Núcleo Celular/metabolismo , Clonación de Organismos , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Femenino , Mitocondrias/metabolismo , Técnicas de Transferencia Nuclear , Oocitos/metabolismo , Embarazo , Especies Reactivas de Oxígeno/metabolismo , Ovinos/genéticaRESUMEN
Myostatin (MSTN) is an important negative regulator of skeletal muscle growth in animals. A lack of MSTN promotes lipolysis and glucose metabolism but inhibits oxidative phosphorylation (OXPHOS). Here, we aimed to investigate the possible mechanism of MSTN regulating the mitochondrial energy homeostasis of skeletal muscle. To this end, MSTN knockout mice were generated by the CRISPR/Cas9 technique. Expectedly, the MSTN null (Mstn-/-) mouse has a hypermuscular phenotype. The muscle metabolism of the Mstn-/- mice was detected by an enzyme-linked immunosorbent assay, indirect calorimetry, ChIP-qPCR, and RT-qPCR. The resting metabolic rate and body temperature of the Mstn-/- mice were significantly reduced. The loss of MSTN not only significantly inhibited the production of ATP by OXPHOS and decreased the activity of respiratory chain complexes, but also inhibited key rate-limiting enzymes related to the TCA cycle and significantly reduced the ratio of NADH/NAD+ in the Mstn-/- mice, which then greatly reduced the total amount of ATP. Further ChIP-qPCR results confirmed that the lack of MSTN inhibited both the TCA cycle and OXPHOS, resulting in decreased ATP production. The reason may be that Smad2/3 is not sufficiently bound to the promoter region of the rate-limiting enzymes Idh2 and Idh3a of the TCA cycle, thus affecting their transcription.
Asunto(s)
Mitocondrias , Músculo Esquelético , Miostatina , Fosforilación Oxidativa , Animales , Ratones , Adenosina Trifosfato/metabolismo , Ratones Noqueados , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Miostatina/genética , Miostatina/metabolismoRESUMEN
Spermatogenesis is a complex process that originates from and depends on the spermatogonial stem cells (SSCs). The number of SSCs is rare, which makes the separation and enrichment of SSCs difficult and inefficient. The transcription factor PAX7 maintains fertility in normal spermatogenesis in mice. However, for large animals, much less is known about the SSCs' self-renewal regulation, especially in dairy goats. We isolated and enriched the CD49f-positive and negative dairy goat testicular cells by magnetic-activated cell sorting strategies. The RNA- sequencing and experimental data revealed that cells with a high CD49f and PAX7 expression are undifferentiated spermatogonia in goat testis. Our findings indicated that ZBTB16 (PLZF), PAX7, LIN28A, BMPR1B, FGFR1, and FOXO1 were expressed higher in CD49f-positive cells as compared to negative cells and goat fibroblasts cells. The expression and distribution of PAX7 in dairy goat also have been detected, which gradually decreased in testis tissue along with the increasing age. When the PAX7 gene was overexpressed in dairy goat immortal mGSCs-I-SB germ cell lines, the expression of PLZF, GFRα1, ID4, and OCT4 was upregulated. Together, our data demonstrated that there is a subset of spermatogonial stem cells with a high expression of PAX7 among the CD49f+ spermatogonia, and PAX7 can maintain the self-renewal of CD49f-positive SSCs.
Asunto(s)
Integrina alfa6/genética , Factor de Transcripción PAX7/genética , Espermatogénesis/genética , Testículo/crecimiento & desarrollo , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Autorrenovación de las Células/genética , Regulación del Desarrollo de la Expresión Génica/genética , Cabras/genética , Cabras/crecimiento & desarrollo , Masculino , MicroARNs/genética , Proteína de la Leucemia Promielocítica con Dedos de Zinc/genética , Espermatogonias/crecimiento & desarrollo , Células Madre/citología , Células Madre/metabolismo , Testículo/metabolismoRESUMEN
Double sex and mab-3 related transcription factor 1 (DMRT1) encodes a double sex/mab-3 (DM) domain, which is the most conserved structure that involved in sex determination both in vertebrates and invertebrates. This study revealed important roles of DMRT1 in maintaining self-renewal of male germline stem cells (mGSCs). Our results showed that insufficient expression of DMRT1 in mice testes resulted in decreased number of spermatogonial cells and collapse of testicular niche in vivo. Self-renewal and proliferation of mGSCs were inhibited. Based on the bimolecular fluorescence complementation (BiFC) and co-immunoprecipitation (co-IP) assay, it was finally revealed that the interaction between DMRT1 and promyelocytic leukemia zinc finger (PLZF) protein was essential for maintaining self-renewal of mGSCs. Moreover, BTB domain of PLZF, DM and DMRT1 domain of DMRT1 were indispensable in mGSC, which were responsible for preserving the quantity of germ cells. Our research provided a new scientific basis for studying the mechanism of self-renewal and spermatogenesis in goat mGSCs.
Asunto(s)
Autorrenovación de las Células , Proteína de la Leucemia Promielocítica con Dedos de Zinc/metabolismo , Dominios y Motivos de Interacción de Proteínas , Espermatogénesis , Células Madre/citología , Testículo/citología , Factores de Transcripción/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Cabras , Humanos , Masculino , Ratones , Ratones Endogámicos ICR , Modelos Animales , Células Madre/metabolismo , Testículo/metabolismoRESUMEN
The efficiency of somatic cell nuclear transfer (SCNT) reprogramming is extremely low in terms of production of cloned animals. Here, we found that telomere rejuvenation is a critical event for SCNT reprogramming. Through small-molecule screening, we identified that melatonin significantly improved the in vitro and in vivo developmental competence of SCNT-derived embryos. Through use of embryonic biopsy, single-cell RNA sequencing, and quantitative FISH experiments, we revealed that melatonin not only attenuated the zygotic genome activation defect but also facilitated telomere elongation in the SCNT embryos. Further investigation indicated that melatonin inhibited heterochromatic epigenetic modification related to gene silencing including DNA methylation and histone H3 lysine 9 trimethylation. In addition, melatonin could increase the level of activation markers such as acetylated histone H3. This is the first study to characterize melatonin-treatment and telomere rejuvenation in SCNT-mediated reprogramming. Moreover, combinational use of melatonin-treated donor embryos and pseudopregnant recipients achieved synergistic enhancement of the production of cloned animals.-Yang, L., Liu, X., Song, L., Su, G., Di, A., Bai, C., Wei, Z., Li, G. Inhibiting repressive epigenetic modification promotes telomere rejuvenation in somatic cell reprogramming.
Asunto(s)
Reprogramación Celular , Embrión de Mamíferos/efectos de los fármacos , Represión Epigenética/efectos de los fármacos , Telómero/fisiología , Animales , Clonación de Organismos , Técnicas de Cultivo de Embriones , Desarrollo Embrionario/efectos de los fármacos , Melatonina/farmacología , Ratones , Estrés Oxidativo/efectos de los fármacosRESUMEN
N6-methyladenosine (m6A) methylation is the most common and abundant modification on mammalian messenger RNA (mRNA) and regulates the pluripotency of embryonic stem cells (ESCs). Research has shown that melatonin plays a fundamental role in DNA and histone modifications. However, the effect of melatonin on RNA modification is unknown. Here, for the first time, we investigated the effect of melatonin on m6A modifications in long-term-cultured ESCs. Pluripotency studies indicated that 10 µmol/L melatonin sufficiently maintained ESCs with stemness features over 45 passages (more than 90 days). Notably, treatment of ESCs with melatonin led to a significant decrease in the nuclear presence of m6A methyltransferase complex and decreased global m6A modification. Depletion of melatonin receptor 1 (MT1) by CRISPR/Cas9 significantly reduced the effects of melatonin on ESC pluripotency and m6A modification. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) revealed that melatonin promotes stabilization of core pluripotency factors, such as Nanog, Sox2, Klf4, and c-Myc, by preventing m6A-dependent mRNA decay. Using cell signaling pathway profiling systems, melatonin was shown to regulate m6A modification predominantly through the MT1-JAK2/STAT3-Zfp217 signal axis. This study reveals a new dimension regarding melatonin regulation of gene expression at the RNA level.
Asunto(s)
Melatonina/farmacología , Células Madre Embrionarias de Ratones/metabolismo , Procesamiento Postranscripcional del ARN/efectos de los fármacos , ARN Mensajero/metabolismo , Receptor de Melatonina MT1/metabolismo , ARNt Metiltransferasas/metabolismo , Animales , Línea Celular , Factor 4 Similar a Kruppel , Ratones , ARN Mensajero/genética , Receptor de Melatonina MT1/genética , ARNt Metiltransferasas/genéticaRESUMEN
Transgenic technology has huge application potential in agriculture and medical fields, such as producing new livestock varieties with new valuable features and xenotransplantation. However, how an exogenous gene affects the host animal's gene regulation networks and their health status is still poorly understood. In the current study, Fat-1 transgenic sheep were generated, and the tissues from 100-day abnormal (DAF_1) and normal (DAF_2) fetuses, postnatal lambs (DAF_4), transgenic-silencing (DAFG5), and -expressing (DAFG6) skin cells were collected and subjected to transcriptome sequencing, and their gene expression profiles were compared in multiple dimensions. The results were as follows. For DAF_1, its abnormal development was caused by pathogen invasion but not the introduction of the Fat-1 gene. Fat-1 expression down-regulated the genes related to the cell cycle; the NF-κB signaling pathway and the PI3K/Akt signaling pathway were down-regulated, and the PUFAs (polyunsaturated fatty acids) biosynthesis pathway was shifted toward the biosynthesis of high-level n-3 LC-PUFAs (long-chain PUFAs). Four key node genes, FADS2, PPARA, PRKACA, and ACACA, were found to be responsible for the gene expression profile shift from the Fat-1 transgenic 100-day fetus to postnatal lamb, and FADS2 may play a key role in the accumulation of n-3 LC-PUFAs in Fat-1 transgenic sheep muscle. Our study provides new insights into the FUFAs synthesis regulation in Fat-1 transgenic animals.
Asunto(s)
Animales Modificados Genéticamente/genética , Ácido Graso Desaturasas/genética , Ácidos Grasos Insaturados/biosíntesis , Ovinos/genética , Transcriptoma , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo , Animales , Células Cultivadas , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Ácidos Grasos Insaturados/genética , FN-kappa B/genética , FN-kappa B/metabolismo , PPAR alfa/genética , PPAR alfa/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismoRESUMEN
Myostatin (Mstn) is an important growth/differentiation factor, and knockdown of Mstn reduces fat content. Here, we knocked down Mstn expression in C2C12 myoblasts and then induced adipogenic trans-differentiation in the cells. The effects of Mstn knockdown on lipid droplet contents and H3K27me3 marker expression on adipocyte-specific genes were detected. The results showed that Mstn knockdown reduced the formation of lipid droplets, downregulated the expression of adipocyte-specific genes, and increased H3K27me3 marker expression on adipocyte-specific genes. Chromatin immunoprecipitation analysis showed that the SMAD2/SMAD3 complex could combine with the Jumonji D3 (Jmjd3) promoter and that Mstn regulated Jmjd3 expression through this process. Jmjd3 overexpression removed the H3K27me3 marker and increased the expression of adipocyte-specific genes. Overall, our results showed that Mstn regulated Jmjd3 expression through SMAD2/SMAD3, thus affecting the H3K27me3 marker on adipocyte-specific genes and the trans-differentiation from myocytes to adipocytes.
Asunto(s)
Adipocitos/citología , Transdiferenciación Celular/genética , Técnicas de Silenciamiento del Gen , Histona Demetilasas con Dominio de Jumonji/metabolismo , Células Musculares/citología , Miostatina/genética , Proteínas Smad Reguladas por Receptores/metabolismo , Adipocitos/metabolismo , Animales , Línea Celular , Regulación hacia Abajo/genética , Histonas/química , Histonas/metabolismo , Gotas Lipídicas/metabolismo , Lisina/metabolismo , Metilación , Ratones , Células Musculares/metabolismo , Miostatina/deficiencia , Proteína Smad2/metabolismo , Proteína smad3/metabolismoRESUMEN
Aberrant activations of Hedegehog (Hh) signaling were found in hepatocellular carcinoma (HCC) and some other cancer types. However, the details have not been completely understood and the underlying mechanism remains unclear. Here we reported that miR-1249 transcription in HCC cells was regulated through direct binding to the conserved sequences in miR-1249 promoter region by Gli1, which functions as a transcription factor and is a component in the Hh signaling pathway. Interestingly, expression of tumor suppressor PTCH1, which is another component of the Hh signaling pathway, was inhibited by miR-1249 through targeting its 3'-untranslated region. Down-regulation of PTCH1 further enhanced the downstream effects mediated by Gli1. In consistent with these findings, miR-1249 expression level was correlated with degree of prognosis (p=0.005) in HCC patients. Taken together, our results suggested the existence of a positive feedback loop comprised of Gli1, miR-1249 and PTCH1. During the process of HCC progression, this positive feedback loop could be continuously activated to enhance tumor cell growth, migration and invasion.
Asunto(s)
Carcinoma Hepatocelular/genética , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias Hepáticas/genética , MicroARNs/genética , Transducción de Señal/genética , Carcinoma Hepatocelular/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Perfilación de la Expresión Génica , Humanos , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , MicroARNs/farmacología , Receptor Patched-1/antagonistas & inhibidores , Receptor Patched-1/genética , Receptor Patched-1/metabolismo , Células Tumorales CultivadasRESUMEN
BACKGROUND: The consumption of omega 3 polyunsaturated fatty acids (PUFAs) is important for human health and is closely associated with cell proliferation and differentiation. This study aimed to investigate the influence of omega 3 PUFAs on embryonic stem cell (ESC) proliferation and explore potential mechanisms that mediate these effects. METHODS: In this study, we isolated ESCs from fad3b-expressing transgenic mice. We detected the fatty-acid composition of ESCs using gas chromatography-mass spectroscopy, analyzed cell-cycle phases using flow cytometry, and detected gene expression using real-time polymerase chain reaction (PCR) and western blots. RESULTS: The amount of omega 3 PUFAs significantly increased in fad3b versus control ESCs. However, the growth of fad3b ESCs was slower than that of control cells, and most fad3b ESCs were in a prolonged G0/G1 phase after being passaged for 18 h. Therefore, we hypothesized that fad3b expression inhibited the cell cycle in ESCs by increasing the expression of P21, which then decreased the expression of cyclin-dependent kinase 4 (Cdk4). We found that pretreatment of fad3b ESCs with PD0325901, a P21 inhibitor, clearly attenuated the inhibitory effects of P21 on Cdk4, and resumed the cell cycle. CONCLUSIONS: Expression of the fad3b gene in ESCs increased the omega 3 PUFA content, which inhibited cell proliferation by prolonging the G1 phase but did not arrest the G0-to-G1 or G1-to-S transitions. The prolonged G1 phase in fad3b ESCs was probably induced by downregulation of Cdk4 expression via p21 upregulation. These results suggest that accumulation of omega 3 PUFAs in vivo may beneficially affect ESC differentiation and that fad3b ESCs may be a useful tool for investigating related mechanisms.
Asunto(s)
Proliferación Celular/genética , Ácido Graso Desaturasas/genética , Ácidos Grasos Omega-6/genética , Células Madre Embrionarias de Ratones/metabolismo , Animales , Ciclo Celular/genética , Línea Celular Tumoral , Quinasa 4 Dependiente de la Ciclina/genética , Ácidos Grasos Omega-6/metabolismo , Lino/genética , Citometría de Flujo , Fase G1/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Ratones Transgénicos/genética , Fase de Descanso del Ciclo Celular/genéticaRESUMEN
The n-3 PUFAs have many beneficial effects on human health, including roles in immunity, neurodevelopment, and preventing cardiovascular disease. In this study, we established reliable model fat-1 transgenic cattle using transgenic technology and performed a systematic investigation to examine the function of n-3 PUFAs. Our results showed that expression of the fat-1 gene improved several biochemical parameters related to liver function and to plasma glucose and plasma lipid metabolism. Results of global gene and plasma protein expression analysis showed that 310 genes and 13 plasma proteins differed significantly in the blood of fat-1 transgenic cattle compared with WT cattle, reflecting their regulatory roles in the immune and cardiovascular systems. Finally, changes in the gut microflora were also noted in the fat-1 transgenic cattle, suggesting novel roles for n-3 PUFAs in the metabolism of glucose and lipids, as well as anti-stress properties. To the best of our knowledge, this is the first report using multiple parallel analyses to investigate the role of n-3 PUFAs using models such as fat-1 transgenic cattle. This study provides novel insights into the regulatory mechanism of fat-1 in the immune and cardiovascular systems, as well as its anti-stress role.
Asunto(s)
Ácido Graso Desaturasas/genética , Ácidos Grasos Omega-3/metabolismo , Animales , Animales Modificados Genéticamente , Bovinos , Microbioma Gastrointestinal , Dosificación de Gen , Perfilación de la Expresión GénicaRESUMEN
The balance between the self-renewal and differentiation of male germline stem cells (mGSCs) is critical for the initiation and maintenance of mammalian spermatogenesis. The promyelocytic leukemia zinc finger (PLZF), a zinc finger protein, is a critical factor for maintaining the self-renewal of mGSCs, so, evaluation of the PLZF pathway in mGSCs may provide a deeper insight into mammalian spermatogenesis. miRNA was also an important regulating factor for the self-renewal and differentiation of mGSCs; however, there is currently no data indicating that which miRNA regulate the self-renewal and differentiation of mGSCs via PLZF. Here, we predicted the prospective miRNA targeting to PLZF using the online Bioinformatics database-Targetscan, and performed an analysis of the dual-luciferase recombinant vector, psiCHCEKTM-2-PLZF-3'UTR. miR-544 mimics (miR-544m), miR-544 inhibitors (miR-544i), Control (NC, scrambled oligonucleotides transfection), pPLZF-IRES2-EGFP or PLZF siRNA were transfected into mGSCs; the cells proliferation was evaluated by BRDU incorporation assay and flow cytometry, and the mGSC marker, GFRa1, PLZF, KIT, DAZL, and VASA expression were analyzed by RT-qPCR, immunofluorescence and Western blot. The results showed that miR-544 regulates dairy goat male germline stem cell self-renewal via targeting PLZF. Our study identifies a new regulatory pathway for PLZF and expands upon the PLZF regulatory network in mGSCs.
Asunto(s)
Células Germinativas/crecimiento & desarrollo , Cabras/genética , Factores de Transcripción de Tipo Kruppel/genética , Espermatogénesis/genética , Animales , Células Germinativas/metabolismo , Factores de Transcripción de Tipo Kruppel/biosíntesis , Masculino , MicroARNs/biosíntesis , MicroARNs/genética , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Transducción de Señal , Células MadreRESUMEN
BACKGROUND: Interspecies somatic cell nuclear transfer (iSCNT) has been regarded as a potential alternative for rescuing highly endangered species and can be used as a model for studying nuclear-cytoplasmic interactions. However, iSCNT embryos often fail to produce viable offspring. The alterations in normal molecular mechanisms contributing to extremely poor development are for the most part unknown. RESULTS: Przewalski's gazelle-bovine iSCNT embryos (PBNT) were produced by transferring Przewalski's gazelle fibroblast nuclei into enucleated bovine oocytes. The percentages of PBNT embryos that developed to morula/blastocyst stages were extremely low even with the use of various treatments that included different SCNT protocols and treatment of embryos with small molecules. Transcriptional microarray analyses of the cloned embryos showed that the upregulation of reprogramming-associated genes in bovine-bovine SCNT (BBNT) embryos was significantly higher than those observed in PBNT embryos (1527:643). In all, 139 transcripts related to various transcription regulation factors (TFs) were unsuccessfully activated in the iSCNT embryos. Maternal degradation profiles showed that 1515 genes were uniquely downregulated in the BBNT embryos, while 343 genes were downregulated in the PBNT embryos. Incompatibilities between mitochondrial DNA (mtDNA) and nuclear DNA revealed that the TOMM (translocase of outer mitochondrial membrane)/TIMM (translocase of inner mitochondrial membrane) complex-associated genes in BBNT embryos had the highest expression levels, while the PBNT embryos exhibited much lower expression rates. CONCLUSIONS: Improper degradation of maternal transcripts, incomplete activation of TFs and abnormal expression of genes associated with mitochondrial function in PBNT embryos likely contributed to incomplete reprogramming of the donor cell nuclei and therefore led to the developmental failure of these cloned embryos.