Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Water Res ; 259: 121834, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820729

RESUMEN

Widespread outbreaks of threatening infections caused by unknown pathogens and water transmission have spawned the development of adsorption methods for pathogen elimination. We proposed a biochar functionalization strategy involving ε-polylysine (PLL), a bio-macromolecular poly(amino acid)s with variable folding conformations, as a "pathogen gripper" on biochar. PLL was successfully bridged onto biochar via polydopamine (PDA) crosslinking. The extension of electropositive side chains within PLL enables the capture of both nanoscale viruses and micrometer-scale bacteria in water, achieving excellent removal performances. This functionalized biochar was tentatively incorporated into ultrafiltration (UF) system, to achieve effective and controllable adsorption and retention of pathogens, and to realize the transfer of pathogens from membrane surface/pore to biochar surface as well as flushing water. The biochar-amended UF systems presents complete retention (∼7 LRV) and hydraulic elution of pathogens into membrane flushing water. Improvements in removal of organics and anti-fouling capability were observed, indicating the broken trade-off in UF pathogen removal dependent on irreversible fouling. Chemical characterizations revealed adsorption mechanisms encompassing electrostatic/hydrophobic interactions, pore filling, electron transfer, chemical bonding and secondary structure transitions. Microscopic and mechanical analyses validated the mechanisms for rapid adsorption and pathogen lysis. Low-concentration alkaline solution for used biochar regeneration, facilitated the deprotonation and transformation of PLL side chain to folded structures (α-helix/ß-sheet). Biochar regeneration process also promoted the effective detachment/inactivation of pathogens and protection of functional groups on biochar, corroborated by physicochemical inspection and molecular dynamics simulation. The foldability of poly(amino acid)s acting like dynamic arms, significantly contributed to pathogen capture/desorption/inactivation and biochar regeneration. This study also inspires future investigation for performances of UF systems amended by poly(amino acid)s-functionalized biochar under diverse pressure, temperature, reactive oxygen species of feeds and chemical cleaning solutions, with far-reaching implications for public health, environmental applications of biochar, and UF process improvement.


Asunto(s)
Carbón Orgánico , Polilisina , Ultrafiltración , Purificación del Agua , Polilisina/química , Carbón Orgánico/química , Adsorción , Purificación del Agua/métodos , Polímeros/química , Indoles
2.
Environ Sci Ecotechnol ; 21: 100416, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38584706

RESUMEN

Water reuse is an effective way to solve the issues of current wastewater increments and water resource scarcity. Ultrafiltration, a promising method for water reuse, has the characteristics of low energy consumption, easy operation, and high adaptability to coupling with other water treatment processes. However, emerging organic contaminants (EOCs) in municipal wastewater cannot be effectively intercepted by ultrafiltration, which poses significant challenges to the effluent quality and sustainability of ultrafiltration process. Here, we develop a cobalt single-atom catalyst-tailored ceramic membrane (Co1-NCNT-CM) in conjunction with an activated peroxymonosulfate (PMS) system, achieving excellent EOCs degradation and anti-fouling performance. An interfacial reaction mechanism effectively mitigates membrane fouling through a repulsive interaction with natural organic matter. The generation of singlet oxygen at the Co-N3-C active sites through a catalytic pathway (PMS→PMS∗→OH∗→O∗→OO∗→1O2) exhibits selective oxidation of phenols and sulfonamides, achieving >90% removal rates. Our findings elucidate a multi-layered functional architecture within the Co1-NCNT-CM/PMS system, responsible for its superior performance in organic decontamination and membrane maintenance during secondary effluent treatment. It highlights the power of integrating Co1-NCNT-CM/PMS systems in advanced wastewater treatment frameworks, specifically for targeted EOCs removal, heralding a new direction for sustainable water management.

3.
Water Res ; 250: 121037, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38142506

RESUMEN

The complex organic and inorganic solutes present in nanofiltration's purification by-product (NF concentrate, NFC) pose challenges to the water processing procedure. To address this, a three-compartment membrane electrolyzer was proposed that facilitates electro-driven ion migration for crystallization alongside synchronous anodic oxidation for organic degradation. With a hydraulic retention time (HRT) of 5 min and a current exceeding 50 mA, the system effectively separated over 25 % of inorganic salts and accomplished reclamation through crystallization in the concentration compartment. Simultaneously, it achieved oxidation of pollutants by more than 35 % based on the total nitrogen index and removed upwards of 15 % of organic carbon. Notably, the efficiency of pollutant removal correlated strongly with the intensity of the current. Furthermore, this study uncovered two issues encountered during the electrochemical process: membrane fouling and electrode fouling. During concentration, metal cations readily formed organic pollution by complexing with organic pollutants, while the crystallization of inorganics on the surface of anion exchange membranes emerged as a pivotal factor hindering current enhancement, similar to the formation of deposited salt in a solution. Long HRT can lead to electrode contamination and corrosion which subsequently affect current efficiency. Energy consumption verified the feasibility of the electrolyzer for NFC processing. Based on our findings, a current intensity of 100 mA (equivalent to a density of 8 mA/cm2) was deemed optimal, striking a balance between pollutant removal and various limiting factors associated with each pollutant. Consequently, this innovative advancement in membrane electrolyzers helps in overcoming limitations in synergistic desalination, ion recovery, and organic removal, establishing a fundamental component of the abbreviated flow process for future NFC treatment.


Asunto(s)
Contaminantes Ambientales , Purificación del Agua , Carbono , Oxidación-Reducción , Contaminación Ambiental , Estrés Oxidativo , Purificación del Agua/métodos , Membranas Artificiales
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda