Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Inorg Chem ; 63(35): 16348-16361, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39155842

RESUMEN

Monitoring of intracellular pH is of great importance since deviation of this parameter from the "normal" magnitudes can be considered as an indicator of various pathologies. Thus, the development of new efficient and biocompatible sensors suitable for application in biological systems and capable of quantitative pH estimation remains an urgent chemical task. Herein, we report the synthesis of a series of phosphorescent rhenium [Re(NN)(CO)2(PR3)2]+ complexes based on the NN diimine ligands containing pH-responsive carboxylic groups and styrene-containing phosphine ligands. The complexes, which display the highest pH sensitivity, were copolymerized with polyvinylpyrrolidone using the RAFT protocol to impart water solubility and to protect the chromophores from interaction with molecular oxygen. The resulting copolymers show an emission lifetime response onto pH variations in the physiological range. Cellular experiments with Chinese hamster ovary cells (CHO-K1) reveal easy internalization of the probes in cell culture and an approximately uniform distribution in cells, with some preference for location in acidic compartments (late endosomes and lysosomes). Using nigericin to homogenize intra- and extracellular pH, we built a calibration of lifetime versus pH in live CHO-K1 cells. Analysis of the phosphorescence lifetime imaging microscopy (PLIM) data confirms the applicability of the obtained sensors for monitoring the intracellular pH in cell cultures.


Asunto(s)
Cricetulus , Polímeros , Renio , Concentración de Iones de Hidrógeno , Animales , Células CHO , Renio/química , Polímeros/química , Polímeros/farmacología , Polímeros/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Estructura Molecular , Imagen Óptica
2.
Inorg Chem ; 63(36): 16610-16621, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39193933

RESUMEN

A series of structurally similar trinuclear macrocyclic copper(I) and silver(I) pyrazolate complexes bearing various short-bite diphosphine R2PCH(R')PR2 ligands are reported. Upon diphosphine coordination, the planar geometry of the initial complexes undergoes bending along the line between two metal atoms coordinated to the phosphorus moieties. The complexes based on dcpm ligands (R = cyclohexyl, R' = H, Ph) do not exhibit dynamic behavior in solution at room temperature on the 31P NMR time scale as it was previously observed for similar trinuclear copper complexes bearing the dppm (R = Ph, R' = H) scaffold. All copper(I) complexes exhibit thermally activated delayed fluorescence (TADF) behavior in the solid state. Importantly, the use of aliphatic substituents on the phosphorus atoms instead of aromatic ones leads to an almost double increase in the quantum efficiency (ΦPL) of photoluminescence by eliminating nonradiative decay from the 3LCPh states of the dppm aromatic rings. The higher donating ability of the substituents in the pyrazolate ligand (CF3 vs CH3) lowers the energy of the metal-centered excited state, allowing for a significant metal impact on the T1 state. Finally, the Ag(I) complex displays an emission efficiency of approximately 14%, being the highest among known trinuclear silver(I) pyrazolate homometallic derivatives.

3.
Int J Mol Sci ; 25(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38203221

RESUMEN

The extracellular matrix (ECM), in which collagen is the most abundant protein, impacts many aspects of tumor physiology, including cellular metabolism and intracellular pH (pHi), as well as the efficacy of chemotherapy. Meanwhile, the role of collagen in differential cell responses to treatment within heterogeneous tumor environments remains poorly investigated. In the present study, we simultaneously monitored the changes in pHi and metabolism in living colorectal cancer cells in vitro upon treatment with a chemotherapeutic combination, FOLFOX (5-fluorouracil, oxaliplatin and leucovorin). The pHi was followed using the new pH-sensitive probe BC-Ga-Ir, working in the mode of phosphorescence lifetime imaging (PLIM), and metabolism was assessed from the autofluorescence of the metabolic cofactor NAD(P)H using fluorescence lifetime imaging (FLIM) with a two-photon laser scanning microscope. To model the ECM, 3D collagen-based hydrogels were used, and comparisons with conventional monolayer cells were made. It was found that FOLFOX treatment caused an early temporal intracellular acidification (reduction in pHi), followed by a shift to more alkaline values, and changed cellular metabolism to a more oxidative state. The presence of unstructured collagen markedly reduced the cytotoxic effects of FOLFOX, and delayed and diminished the pHi and metabolic responses. These results support the observation that collagen is a factor in the heterogeneous response of cancer cells to chemotherapy and a powerful regulator of their metabolic behavior.


Asunto(s)
Neoplasias , Fotones , Humanos , Microscopía Fluorescente , Colágeno , Concentración de Iones de Hidrógeno
4.
Molecules ; 28(1)2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36615546

RESUMEN

A series of diphosphine Re(I) complexes Re1-Re4 have been designed via decoration of the archetypal core {Re(CO)2(N^N)} through the installations of the phosphines P0 and P1 bearing the terminal double bond, where N^N = 2,2'-bipyridine (N^N1), 4,4'-di-tert-butyl-2,2'-bipyridine (N^N2) or 2,9-dimethyl-1,10-phenanthroline (N^N3) and P0 = diphenylvinylphosphine, and P1 = 4-(diphenylphosphino)styrene. These complexes were copolymerized with the corresponding N-vinylpyrrolidone-based Macro-RAFT agents of different polymer chain lengths to give water-soluble copolymers of low-molecular p(VP-l-Re) and high-molecular p(VP-h-Re) block-copolymers containing rhenium complexes. Compounds Re1-Re4, as well as the copolymers p(VP-l-Re) and p(VP-h-Re), demonstrate phosphorescence from a 3MLCT excited state typical for this type of chromophores. The copolymers p(VP-l-Re#) and p(VP-h-Re#) display weak sensitivity to molecular oxygen in aqueous and buffered media, which becomes almost negligible in the model physiological media. In cell experiments with CHO-K1 cell line, p(VP-l-Re2) and p(VP-h-Re2) displayed significantly reduced toxicity compared to the initial Re2 complex and internalized into cells presumably by endocytic pathways, being eventually accumulated in endosomes. The sensitivity of the copolymers to oxygen examined in CHO-K1 cells via phosphorescence lifetime imaging microscopy (PLIM) proved to be inessential.


Asunto(s)
Povidona , Renio , Cricetinae , Animales , Renio/química , Solubilidad , 2,2'-Dipiridil , Polímeros/química , Células CHO , Agua/química , Oxígeno
5.
Chemistry ; 28(64): e202202207, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36307898

RESUMEN

Five square-planar [Pt(C^N*N'^C')] complexes (Pt1-Pt5) with novel nonsymmetric tetradentate ligands (L1-L5) were synthesized and characterized. Varying the structure of the metalating aromatic systems result in substantial changes in photophysical properties and intermolecular interaction mode of the complexes in solution and in solid state. The complexes are strongly emissive in tetrahydrofuran solution, with the band maxima ranging from 560 to 690 nm. Three of these complexes (Pt1, Pt2, Pt4) afford nanospecies upon injection of their solution into water, which show aggregation-induced emission (AIE) with a strong red shift of emission bands. In the solid state, crystalline samples of these complexes demonstrate mechanochromism upon grinding with a bathochromic shift of the emission. DFT and TD-DFT computational analysis of monomeric Pt1-Pt5 in solution and model dimeric emitters formed through intermolecular interaction of Pt1, Pt2, Pt4 molecules allowed assignment of observed AIE to the 3 MMLCT excited states of Pt-Pt bonded aggregates of these complexes.

6.
Chemistry ; 28(64): e202203341, 2022 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-36347631

RESUMEN

Invited for the cover of this issue are the groups of Sergey P. Tunik and his colleagues from St Petersburg University. The image depicts the strong bathochromic shift of the emission wavelength of phosphorescent platinum(II) complexes upon their aggregation in the presence of water. Read the full text of the article at 10.1002/chem.202202207.

7.
Molecules ; 27(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36557943

RESUMEN

Three novel luminescent Eu(III) complexes, Eu1-Eu3, have been synthesized and characterized with CHN analysis, mass-spectrometry and 1H NMR spectroscopy. The complexes display strong emission in dichloromethane solution upon excitation at 405 and 800 nm with a quantum yield from 18.3 to 31.6%, excited-state lifetimes in the range of 243-1016 ms at 20 °C, and lifetime temperature sensitivity of 0.9%/K (Eu1), 1.9%/K (Eu2), and 1.7%/K (Eu3). The chromophores were embedded into biocompatible latex nanoparticles (NPs_Eu1-NPs_Eu3) that prevented emission quenching and kept the photophysical characteristics of emitters unchanged with the highest temperature sensitivity of 1.3%/K (NPs_Eu2). For this probe cytotoxicity, internalization dynamics and localization in CHO-K1 cells were studied together with lifetime vs. temperature calibration in aqueous solution, phosphate buffer, and in a mixture of growth media and fetal bovine serum. The obtained data were then averaged to give the calibration curve, which was further used for temperature estimation in biological samples. The probe was stable in physiological media and displayed good reproducibility in cycling experiments between 20 and 40 °C. PLIM experiments with thermostated CHO-K1 cells incubated with NPs_Eu2 indicated that the probe could be used for temperature estimation in cells including the assessment of temperature variations upon chemical shock (sample treatment with mitochondrial uncoupling reagent).


Asunto(s)
Europio , Nanopartículas , Europio/química , Sondas Moleculares , Temperatura , Reproducibilidad de los Resultados
8.
Biopolymers ; 109(9): e23236, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30269339

RESUMEN

κ-carrageenan is a linear sulfated anionic gelling polysaccharide obtained from red seaweed algae by an alkaline hydrolysis. We applied static and dynamic light scattering (DLS), capillary viscometry, FT-IR, and electrophoretic DLS to gain insight into the effect of deep alkaline hydrolysis (95 °C, pH = 10 during Th = 60, 75, and 90 min) on κ-carrageenan macromolecules in a coil conformation. As DLS of coil-like κ-carrageenans is usually complicated by spurious permanent aggregates, the alkaline hydrolysis of κ-carrageenans has not been studied by DLS. By applying a double-dialysis procedure (first against water, then against 0.1 M NaCl), we succeeded in obtaining dilute solutions of coil-like κ-carrageenans with unimodal DLS distributions. Association that started with increasing concentration was attributed to attractive dipole-dipole interactions between ion-pairs formed by condensed counter-ions in the vicinity of carboxyl groups of the reducing ends. The second type of stickers resulted from the compositional heterogeneity of κ-carrageenan, namely, from the traces of ι-carrageenan blocks which amount increased with hydrolysis. With increasing Th we observed both the progressive decrease of molecular mass and the growth of association. Lowering the temperature and increasing concentration during lyophilization strengthened the intermolecular junctions, leading to the formation of permanent aggregates.


Asunto(s)
Carragenina/química , Geles , Concentración de Iones de Hidrógeno , Hidrólisis , Conformación Molecular , Tamaño de la Partícula , Rhodophyta/química , Cloruro de Sodio/química , Agua/química
9.
Macromol Biosci ; : e2400225, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38987922

RESUMEN

In the present report, a novel dual pH-O2 sensor based on covalent conjugate of rhodamine 6G and cyclometalated iridium complex with poly(vinylpyrrolidone-block-vinyltetrazole) copolymer is reported. In model physiological solutions the sensor chromophores display independent phosphorescent and fluorescent lifetime responses onto variations in oxygen concentration and pH, respectively. Colocalization studies on Chinese hamster ovary cells demonstrate the preferential localization in endosomes and lysosomes. The fluorescent lifetime imaging microscopy-phosphorescent lifetime imaging microscopy (FLIM-PLIM) experiments show that the phosphorescent O2 sensor provides unambiguous information onto hypoxia versus normoxia cell status as well as semi-quantitative data on the oxygen concentration in cells in between these two states. However, the results of FLIM measurements indicate that dynamic lifetime interval of the sensor (≈0.5 ns between pH values 5.0 and 8.0) is insufficient even for qualitative estimation of pH in living cells because half-width of lifetime distribution in the studied samples is higher than the sensor dynamic interval. Nevertheless, the variations in rhodamine emission intensity are much higher and allow rough discrimination of acidic and neutral cell conditions. Thus, the results of this study indicate that the suggested approach to the design of dual pH-O2 sensors makes possible to prepare the biocompatible and water-soluble conjugate with fast cellular uptake.

10.
Dalton Trans ; 51(4): 1257-1280, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34878463

RESUMEN

Application of NIR (near-infrared) emitting transition metal complexes in biomedicine is a rapidly developing area of research. Emission of this class of compounds in the "optical transparency windows" of biological tissues and the intrinsic sensitivity of their phosphorescence to oxygen resulted in the preparation of several commercial oxygen sensors capable of deep (up to whole-body) and quantitative mapping of oxygen gradients suitable for in vivo experimental studies. In addition to this achievement, the last decade has also witnessed the increased growth of successful alternative applications of NIR phosphors that include (i) site-specific in vitro and in vivo visualization of sophisticated biological models ranging from 3D cell cultures to intact animals; (ii) sensing of various biologically relevant analytes, such as pH, reactive oxygen and nitrogen species, RedOx agents, etc.; (iii) and several therapeutic applications such as photodynamic (PDT), photothermal (PTT), and photoactivated cancer (PACT) therapies as well as their combinations with other therapeutic and imaging modalities to yield new variants of combined therapies and theranostics. Nevertheless, emerging applications of these compounds in experimental biomedicine and their implementation as therapeutic agents practically applicable in PDT, PTT, and PACT face challenges related to a critically important improvement of their photophysical and physico-chemical characteristics. This review outlines the current state of the art and achievements of the last decade and stresses the most promising trends, major development prospects, and challenges in the design of NIR phosphors suitable for biomedical applications.


Asunto(s)
Técnicas Biosensibles , Complejos de Coordinación/química , Diagnóstico por Imagen , Sustancias Luminiscentes/química , Humanos
11.
Int J Biol Macromol ; 137: 358-365, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31260775

RESUMEN

We study colloids of nanobiocomposites (NBC) containing Au nanoparticles (NP) obtained by reduction of gold precursor with functional groups of κCAR. The AuNPs content was changed from 2.0 to 5.6 w/w %. Hydrolysis of κCAR during reduction of gold ions produced carboxylate groups supporting nanobioconjugation (FT-IR data) and electrostatic stabilization through increased negative ζ-potential. The self-assembly of AuNPs took place after storing NBC, as shown by UV/vis. extinction and transmission electron microscopy. Analysis of the structure-sensitive Rg/Rh ratios obtained by dynamic and static light scattering showed that the colloids have core-shell structure. The macromolecules in the shell exhibited polyelectrolyte expansion at [NaCl] and [KCl] < 0.02 M. Above 0.02 M, the difference between non-specific sodium and specific potassium ions on the shell thickness was registered. The temperature hysteresis of the hydrodynamic radius Rh was similar to that of the pristine κCAR observed previously by optical rotation. Monitoring the equilibration of light scattering intensity at each mini-quenching step of the cooling run allowed further insight into the hysteresis origin. These colloids are interesting for sensing applications because of enhanced scattering of plasmonically coupled AuNPE. Their thermo- and ion-sensitivity can be useful in drug delivery.


Asunto(s)
Carragenina , Coloides/química , Oro , Nanopartículas del Metal , Carragenina/química , Dispersión Dinámica de Luz , Oro/química , Nanopartículas del Metal/química , Nanopartículas del Metal/ultraestructura , Estructura Molecular , Espectrofotometría Ultravioleta , Espectroscopía Infrarroja por Transformada de Fourier , Viscosidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda