Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Nature ; 544(7649): 191-195, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28346937

RESUMEN

Electrophilic aromatic substitution is one of the most important and recognizable classes of organic chemical transformation. Enzymes create the strong electrophiles that are needed for these highly energetic reactions by using O2, electrons, and metals or other cofactors. Although the nature of the oxidants that carry out electrophilic aromatic substitution has been deduced from many approaches, it has been difficult to determine their structures. Here we show the structure of a diiron hydroxylase intermediate formed during a reaction with toluene. Density functional theory geometry optimizations of an active site model reveal that the intermediate is an arylperoxo Fe2+/Fe3+ species with delocalized aryl radical character. The structure suggests that a carboxylate ligand of the diiron centre may trigger homolytic cleavage of the O-O bond by transferring a proton from a metal-bound water. Our work provides the spatial and electronic constraints needed to propose a comprehensive mechanism for diiron enzyme arene hydroxylation that accounts for many prior experimental results.


Asunto(s)
Hierro/química , Hierro/metabolismo , Oxigenasas/química , Oxigenasas/metabolismo , Tolueno/química , Tolueno/metabolismo , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Hidroxilación , Ligandos , Modelos Moleculares , Oxidantes/química , Oxidantes/metabolismo , Teoría Cuántica , Relación Estructura-Actividad
2.
Nucleic Acids Res ; 46(5): 2624-2635, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29309709

RESUMEN

Antibody fragments such as Fabs possess properties that can enhance protein and RNA crystallization and therefore can facilitate macromolecular structure determination. In particular, Fab BL3-6 binds to an AAACA RNA pentaloop closed by a GC pair with ∼100 nM affinity. The Fab and hairpin have served as a portable module for RNA crystallization. The potential for general application make it desirable to adjust the properties of this crystallization module in a manner that facilitates its use for RNA structure determination, such as ease of purification, surface entropy or binding affinity. In this work, we used both in vitro RNA selection and phage display selection to alter the epitope and paratope sides of the binding interface, respectively, for improved binding affinity. We identified a 5'-GNGACCC-3' consensus motif in the RNA and S97N mutation in complimentarity determining region L3 of the Fab that independently impart about an order of magnitude improvement in affinity, resulting from new hydrogen bonding interactions. Using a model RNA, these modifications facilitated crystallization under a wider range of conditions and improved diffraction. The improved features of the Fab-RNA module may facilitate its use as an affinity tag for RNA purification and imaging and as a chaperone for RNA crystallography.


Asunto(s)
Cristalografía por Rayos X , Fragmentos Fab de Inmunoglobulinas/química , ARN/química , ARN/inmunología , Regiones Determinantes de Complementariedad/química , Epítopos/química , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/inmunología , Modelos Moleculares , Mutación , Motivos de Nucleótidos
3.
Biochemistry ; 58(27): 2996-3004, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31243996

RESUMEN

Anthrax, a lethal, weaponizable disease caused by Bacillus anthracis, acts through exotoxins that are primary mediators of systemic toxicity and also targets for neutralization by passive immunotherapy. The ease of engineering B. anthracis strains resistant to established therapy and the historic use of the microbe in bioterrorism present a compelling test case for platforms that permit the rapid and modular development of neutralizing agents. In vitro antigen-binding fragment (Fab) selection offers the advantages of speed, sequence level molecular control, and engineering flexibility compared to traditional monoclonal antibody pipelines. By screening an unbiased, chemically synthetic phage Fab library and characterizing hits in cell-based assays, we identified two high-affinity neutralizing Fabs, A4 and B7, against anthrax edema factor (EF), a key mediator of anthrax pathogenesis. Engineered homodimers of these Fabs exhibited potency comparable to that of the best reported neutralizing monoclonal antibody against EF at preventing EF-induced cyclic AMP production. Using internalization assays in COS cells, B7 was found to block steps prior to EF internalization. This work demonstrates the efficacy of synthetic alternatives to traditional antibody therapeutics against anthrax while also demonstrating a broadly generalizable, rapid, and modular screening pipeline for neutralizing antibody generation.


Asunto(s)
Carbunco/tratamiento farmacológico , Anticuerpos Neutralizantes/farmacología , Bacillus anthracis/efectos de los fármacos , Toxinas Bacterianas/antagonistas & inhibidores , Fragmentos Fab de Inmunoglobulinas/farmacología , Secuencia de Aminoácidos , Animales , Carbunco/metabolismo , Carbunco/microbiología , Anticuerpos Neutralizantes/química , Antígenos Bacterianos/metabolismo , Bacillus anthracis/fisiología , Toxinas Bacterianas/metabolismo , Células CHO , Células COS , Línea Celular , Chlorocebus aethiops , Cricetulus , AMP Cíclico/metabolismo , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Ratones , Multimerización de Proteína
4.
Biochemistry ; 51(6): 1101-13, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22264099

RESUMEN

Crystal structures of toluene 4-monooxygenase hydroxylase in complex with reaction products and effector protein reveal active site interactions leading to regiospecificity. Complexes with phenolic products yield an asymmetric µ-phenoxo-bridged diiron center and a shift of diiron ligand E231 into a hydrogen bonding position with conserved T201. In contrast, complexes with inhibitors p-NH(2)-benzoate and p-Br-benzoate showed a µ-1,1 coordination of carboxylate oxygen between the iron atoms and only a partial shift in the position of E231. Among active site residues, F176 trapped the aromatic ring of products against a surface of the active site cavity formed by G103, E104 and A107, while F196 positioned the aromatic ring against this surface via a π-stacking interaction. The proximity of G103 and F176 to the para substituent of the substrate aromatic ring and the structure of G103L T4moHD suggest how changes in regiospecificity arise from mutations at G103. Although effector protein binding produced significant shifts in the positions of residues along the outer portion of the active site (T201, N202, and Q228) and in some iron ligands (E231 and E197), surprisingly minor shifts (<1 Å) were produced in F176, F196, and other interior residues of the active site. Likewise, products bound to the diiron center in either the presence or absence of effector protein did not significantly shift the position of the interior residues, suggesting that positioning of the cognate substrates will not be strongly influenced by effector protein binding. Thus, changes in product distributions in the absence of the effector protein are proposed to arise from differences in rates of chemical steps of the reaction relative to motion of substrates within the active site channel of the uncomplexed, less efficient enzyme, while structural changes in diiron ligand geometry associated with cycling between diferrous and diferric states are discussed for their potential contribution to product release.


Asunto(s)
Hierro/química , Complejos Multiproteicos/química , Oxigenasas/química , Ácidos Carboxílicos/química , Catálisis , Dominio Catalítico/genética , Cristalografía por Rayos X , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Enlace de Hidrógeno , Ligandos , Complejos Multiproteicos/antagonistas & inhibidores , Complejos Multiproteicos/genética , Oxigenasas/antagonistas & inhibidores , Oxigenasas/genética , Unión Proteica , Pseudomonas mendocina/enzimología , Especificidad por Sustrato/genética , Tolueno/química
5.
Proc Natl Acad Sci U S A ; 105(49): 19194-8, 2008 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-19033467

RESUMEN

Carboxylate-bridged diiron hydroxylases are multicomponent enzyme complexes responsible for the catabolism of a wide range of hydrocarbons and as such have drawn attention for their mechanism of action and potential uses in bioremediation and enzymatic synthesis. These enzyme complexes use a small molecular weight effector protein to modulate the function of the hydroxylase. However, the origin of these functional changes is poorly understood. Here, we report the structures of the biologically relevant effector protein-hydroxylase complex of toluene 4-monooxygenase in 2 redox states. The structures reveal a number of coordinated changes that occur up to 25 A from the active site and poise the diiron center for catalysis. The results provide a structural basis for the changes observed in a number of the measurable properties associated with effector protein binding. This description provides insight into the functional role of effector protein binding in all carboxylate-bridged diiron hydroxylases.


Asunto(s)
Hierro/química , Oxigenasas de Función Mixta/química , Complejos Multienzimáticos/química , Oxigenasas/química , Dominio Catalítico , Cristalografía , Hierro/metabolismo , Metabolismo , Oxigenasas de Función Mixta/metabolismo , Peso Molecular , Complejos Multienzimáticos/metabolismo , Oxidación-Reducción , Oxigenasas/metabolismo , Estructura Terciaria de Proteína , Relación Estructura-Actividad
6.
Sci Immunol ; 6(56)2021 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-33637595

RESUMEN

Although most current treatments for autoimmunity involve broad immunosuppression, recent efforts have aimed to suppress T cells in an antigen-specific manner to minimize risk of infection. One such effort is through targeting antigen to the apoptotic pathway to increase presentation of the antigen of interest in a tolerogenic context. Erythrocytes present a rational candidate to target because of their high rate of eryptosis, which facilitates continual uptake by antigen-presenting cells in the spleen. Here, we develop an approach that binds antigens to erythrocytes to induce sustained T cell dysfunction. Transcriptomic and phenotypic analyses revealed signatures of self-tolerance and exhaustion, including up-regulation of PD-1, CTLA4, Lag3, and TOX. Antigen-specific T cells were incapable of responding to an adjuvanted antigenic challenge even months after antigen clearance. With this strategy, we prevented pathology in a mouse experimental autoimmune encephalomyelitis model. CD8+ T cell education occurred in the spleen and was dependent on cross-presenting Batf3+ dendritic cells. These results demonstrate that antigens associated with eryptotic erythrocytes induce lasting T cell dysfunction that could be protective in deactivating pathogenic T cells.


Asunto(s)
Presentación de Antígeno , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Eriptosis/inmunología , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Reactividad Cruzada , Células Dendríticas/metabolismo , Eritrocitos/metabolismo , Eritrocitos/patología , Femenino , Células HEK293 , Humanos , Tolerancia Inmunológica , Ratones , Ratones Noqueados , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
7.
Protein Sci ; 29(1): 141-156, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31622515

RESUMEN

Engineered recombinant antibody-based reagents are rapidly supplanting traditionally derived antibodies in many cell biological applications. A particularly powerful aspect of these engineered reagents is that other modules having myriad functions can be attached to them either chemically or through molecular fusions. However, these processes can be cumbersome and do not lend themselves to high throughput applications. Consequently, we have endeavored to develop a platform that can introduce multiple functionalities into a class of Fab-based affinity reagents in a "plug and play" fashion. This platform exploits the ultra-tight binding interaction between affinity matured variants of a Fab scaffold (FabS ) and a domain of an immunoglobulin binding protein, protein G (GA1). GA1 is easily genetically manipulatable facilitating the ability to link these modules together like beads on a string with adjustable spacing to produce multivalent and bi-specific entities. GA1 can also be fused to other proteins or be chemically modified to engage other types of functional components. To demonstrate the utility for the Fab-GA1 platform, we applied it to a detection proximity assay based on the ß-lactamase (BL) split enzyme system. We also show the bi-specific capabilities of the module by using it in context of a Bi-specific T-cell engager (BiTE), which is a therapeutic assemblage that induces cell killing by crosslinking T-cells to cancer cells. We show that GA1-Fab modules are easily engineered into potent cell-killing BiTE-like assemblages and have the advantage of interchanging Fabs directed against different cell surface cancer-related targets in a plug and play fashion.


Asunto(s)
Fragmentos Fab de Inmunoglobulinas/genética , Proteínas del Tejido Nervioso/genética , Ingeniería de Proteínas/métodos , Línea Celular , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/metabolismo , Modelos Moleculares , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Conformación Proteica , Dominios Proteicos , Proteínas Recombinantes/metabolismo
8.
Biochemistry ; 48(38): 8932-9, 2009 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-19705873

RESUMEN

A diiron hydroxylase reaction typically begins by combination of O2 with a diferrous center to form reactive intermediates capable of hydrocarbon hydroxylation. In this natural cycle, reducing equivalents are provided by specific interactions with electron transfer proteins. The biological process can be bypassed by combining H2O2 with a diferric center, i.e., peroxide-shunt catalysis. Here we show that toluene 4-monooxygenase has a peroxide-shunt reaction that is approximately 600-fold slower than catalysis driven by biological electron transfer. However, the toluene 4-monooxygenase hydroxylase-effector protein complex was stable in the presence of 300 mM H2O2, suggesting overall benign effects of the exogenous oxidant on active site structure and function. The X-ray structure of the toluene 4-monooxygenase hydroxylase-effector protein complex determined from crystals soaked in H2O2 revealed a bound diatomic molecule, assigned to a cis-mu-1,2-peroxo bridge. This peroxo species resides in an active site position adjacent to the hydrogen-bonding substructure established by effector protein binding and faces into the distal cavity where substrate must bind during regiospecific aromatic ring hydroxylation catalysis. These results provide a new structural benchmark for how activated intermediates may be formed and dispatched during diiron hydroxylase catalysis.


Asunto(s)
Oxigenasas/química , Oxigenasas/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Peróxido de Hidrógeno/metabolismo , Hierro/química , Cinética , Modelos Moleculares , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Pseudomonas mendocina/enzimología , Electricidad Estática
9.
Biochemistry ; 48(18): 3838-46, 2009 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-19290655

RESUMEN

The active site residue Thr-201 in toluene 4-monooxygenase hydroxylase (T4moH) has a structural counterpart in the active sites of all diiron monooxygenases. Thus, our previous finding that mutation of this residue to Ala, Gly, or Ser had no impact on steady-state catalysis or coupling was surprising. In this work, we provide kinetic, biochemical, and structural evidence that one role of Thr-201 may be to stabilize a peroxo-level intermediate during enzyme catalysis. During reactions in the absence of substrate, T201 T4moH slowly consumed O(2) but only a negligible amount of H(2)O(2) was released. In contrast, T201A T4moH gave stoichometric release of H(2)O(2) during reaction in the absence of substrate. Both enzyme isoforms were tightly coupled during steady-state catalysis with saturating toluene and other optimal substrates and exhibited near-identical kinetic parameters. However, rapid mix single-turnover studies showed that T201A T4moH had a faster first-order rate constant for product formation than T201 T4moH did. Comparison of X-ray crystal structures of resting and reduced T201A T4moH in complex with T4moD with comparable structures of T201 T4moHD revealed changes in the positions of several key active site residues relative to the comparable structures of T201 T4moH with T4moD. This combination of catalytic and structural studies offers important new insight into the role of the role of conserved Thr-201, and its contributions to the catalytic reaction cycle.


Asunto(s)
Oxigenasas/metabolismo , Treonina/metabolismo , Biocatálisis , Dominio Catalítico , Cristalografía por Rayos X , Hidrólisis , Cinética , Modelos Moleculares , Oxígeno/metabolismo , Oxigenasas/química , Solubilidad , Especificidad por Sustrato
10.
Proteins ; 74(2): 368-77, 2009 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-18623062

RESUMEN

An enzyme with sarcosine dimethylglycine methyltransferase (SDMT) activity has been identified in the thermophilic eukaryote, Galdieria sulphuraria. The crystal structure of the enzyme, solved to a resolution of 1.95 A, revealed a fold highly similar to that of mycolic acid synthases. The kcat and apparent K(M) values were 64.3 min(-1) and 2.0 mM for sarcosine and 85.6 min(-1) and 2.8 mM for dimethylglycine, respectively. Apparent K(M) values of S-adenosylmethionine were 144 and 150 microM for sarcosine and dimethylglycine, respectively, and the enzyme melting temperature was 61.1 degrees C. Modeling of cofactor binding in the active site based on the structure of methoxy mycolic acid synthase 2 revealed a number of conserved interactions within the active site.


Asunto(s)
Proteínas Algáceas/metabolismo , Metiltransferasas/metabolismo , Rhodophyta/enzimología , Sarcosina/análogos & derivados , Sarcosina/metabolismo , Proteínas Algáceas/química , Proteínas Algáceas/aislamiento & purificación , Cristalografía por Rayos X , Estabilidad de Enzimas , Cinética , Metiltransferasas/química , Metiltransferasas/aislamiento & purificación , Pliegue de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Especificidad por Sustrato , Temperatura
11.
J Mol Biol ; 430(3): 337-347, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29273204

RESUMEN

Antibody Fab fragments have been exploited with significant success to facilitate the structure determination of challenging macromolecules as crystallization chaperones and as molecular fiducial marks for single particle cryo-electron microscopy approaches. However, the inherent flexibility of the "elbow" regions, which link the constant and variable domains of the Fab, can introduce disorder and thus diminish their effectiveness. We have developed a phage display engineering strategy to generate synthetic Fab variants that significantly reduces elbow flexibility, while maintaining their high affinity and stability. This strategy was validated using previously recalcitrant Fab-antigen complexes where introduction of an engineered elbow region enhanced crystallization and diffraction resolution. Furthermore, incorporation of the mutations appears to be generally portable to other synthetic antibodies and may serve as a universal strategy to enhance the success rates of Fabs as structure determination chaperones.


Asunto(s)
Antígenos/química , Microscopía por Crioelectrón/métodos , Fragmentos Fab de Inmunoglobulinas/química , Antígenos/ultraestructura , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/ultraestructura , Cristalización/métodos , Humanos , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/ultraestructura , Biblioteca de Péptidos , Conformación Proteica , Ingeniería de Proteínas , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
12.
Elife ; 72018 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-29596046

RESUMEN

Insulin degrading enzyme (IDE) plays key roles in degrading peptides vital in type two diabetes, Alzheimer's, inflammation, and other human diseases. However, the process through which IDE recognizes peptides that tend to form amyloid fibrils remained unsolved. We used cryoEM to understand both the apo- and insulin-bound dimeric IDE states, revealing that IDE displays a large opening between the homologous ~55 kDa N- and C-terminal halves to allow selective substrate capture based on size and charge complementarity. We also used cryoEM, X-ray crystallography, SAXS, and HDX-MS to elucidate the molecular basis of how amyloidogenic peptides stabilize the disordered IDE catalytic cleft, thereby inducing selective degradation by substrate-assisted catalysis. Furthermore, our insulin-bound IDE structures explain how IDE processively degrades insulin by stochastically cutting either chain without breaking disulfide bonds. Together, our studies provide a mechanism for how IDE selectively degrades amyloidogenic peptides and offers structural insights for developing IDE-based therapies.


Asunto(s)
Insulina/química , Insulina/metabolismo , Insulisina/química , Insulisina/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Espectrometría de Masas , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Proteolisis , Dispersión del Ángulo Pequeño
13.
Protein Sci ; 25(7): 1290-8, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27334407

RESUMEN

Engineering monovalent Fab fragments into bivalent formats like IgGs or F(ab')2 can lead to aggregation presumably because of nonspecific off-target interactions that induce aggregation. In an effort to further understand the molecular determinants of nonspecific interactions for engineered antibodies and natively folded proteins in general, we focused on a synthetic Fab with low nanomolar affinity to histone chaperone Anti-silencing factor 1 (Asf1) that demonstrates off-target binding through low solubility (∼5 mg/mL) in the multivalent F(ab') 2 state. Here, we generated phage display-based shotgun scanning libraries to introduce aspartate as a negative design element into the antibody paratope. The antibody-combining site was amenable to aspartate substitution at numerous positions within the antigen binding loops and one variant, Tyr(L93) Asp/His(L94) Asp/Thr(H100b) Asp, possessed high solubility (>100 mg/ml). Furthermore, the mutations decreased nonspecific interactions measured by column interaction chromatography and ELISA in the multivalent antibody format while maintaining high affinity to the antigen. Structural determination of the antibody-antigen complex revealed that the aspartate-permissive residues formed a polar ring around the structural and functional paratope, recapitulating the canonical feature of naturally occurring protein-protein interactions. This observation may inform future strategies for the design and engineering of molecular recognition.


Asunto(s)
Sustitución de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/metabolismo , Afinidad de Anticuerpos , Ácido Aspártico , Sitios de Unión de Anticuerpos , Proteínas de Ciclo Celular/química , Técnicas de Visualización de Superficie Celular , Cristalografía por Rayos X , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Modelos Moleculares , Chaperonas Moleculares , Conformación Proteica , Ingeniería de Proteínas
14.
Nat Commun ; 5: 5009, 2014 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-25248368

RESUMEN

Productive biomolecular recognition requires exquisite control of affinity and specificity. Accordingly, nature has devised many strategies to achieve proper binding interactions. Bacterial multicomponent monooxygenases provide a fascinating example, where a diiron hydroxylase must reversibly interact with both ferredoxin and catalytic effector in order to achieve electron transfer and O2 activation during catalysis. Because these two accessory proteins have distinct structures, and because the hydroxylase-effector complex covers the entire surface closest to the hydroxylase diiron centre, how ferredoxin binds to the hydroxylase has been unclear. Here we present high-resolution structures of toluene 4-monooxygenase hydroxylase complexed with its electron transfer ferredoxin and compare them with the hydroxylase-effector structure. These structures reveal that ferredoxin or effector protein binding produce different arrangements of conserved residues and customized interfaces on the hydroxylase in order to achieve different aspects of catalysis.


Asunto(s)
Sitios de Unión/genética , Compuestos Férricos/metabolismo , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Complejos Multiproteicos/metabolismo , Oxigenasas/metabolismo , Catálisis , Clonación Molecular , Cristalización , Electroforesis en Gel de Poliacrilamida , Escherichia coli , Ferredoxinas/metabolismo , Oxigenasas de Función Mixta/genética , Complejos Multiproteicos/genética , Oxigenasas/genética , Conformación Proteica
15.
J Immunol Methods ; 415: 24-30, 2014 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-25450256

RESUMEN

Immunoglobulin binding proteins (IBPs) are broadly used as reagents for the purification and detection of antibodies. Among the IBPs, the most widely used are Protein-A and Protein-G. The C2 domain of Protein-G from Streptococcus is a multi-specific protein domain; it possesses a high affinity (K(D) ~10 nM) for the Fc region of the IgG, but a much lower affinity (KD~low µM) for the constant domain of the antibody fragment (Fab), which limits some of its applications. Here, we describe the engineering of the Protein-G interface using phage display to create Protein-G-A1, a variant with 8 point mutations and an approximately 100-fold improved affinity over the parent domain for the 4D5 Fab scaffold. Protein-G-A1 is capable of robust binding to Fab fragments for numerous applications. Furthermore, we isolated a variant with pH-dependent affinity, demonstrating a 1,000-fold change in affinity from pH7 to 4. Additional rational mutagenesis endowed Protein-G with significantly enhanced stability in basic conditions relative to the parent domain while maintaining high affinity to the Fab. This property is particularly useful to regenerate Protein-G affinity columns. Lastly, the affinity-matured Protein-G-A1 variant was tethered together to produce dimers capable of providing multivalent affinity enhancement to a low affinity antibody fragment-antigen interaction. Engineered Protein-G variants should find widespread application in the use of Fab-based affinity reagents.


Asunto(s)
Proteínas Bacterianas/química , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/química , Inmunoglobulina G/química , Secuencia de Aminoácidos , Afinidad de Anticuerpos , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Concentración de Iones de Hidrógeno , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Cinética , Datos de Secuencia Molecular , Mutación , Biblioteca de Péptidos , Unión Proteica , Ingeniería de Proteínas/métodos , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología
16.
J Biol Chem ; 284(33): 22297-22309, 2009 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-19494116

RESUMEN

In this study we analyzed the structure and function of a truncated form of hemolysin A (HpmA265) from Proteus mirabilis using a series of functional and structural studies. Hemolysin A belongs to the two-partner secretion pathway. The two-partner secretion pathway has been identified as the most common protein secretion pathway among Gram-negative bacteria. Currently, the mechanism of action for the two-partner hemolysin members is not fully understood. In this study, hemolysis experiments revealed a unidirectional, cooperative, biphasic activity profile after full-length, inactive hemolysin A was seeded with truncated hemolysin A. We also solved the first x-ray structure of a TpsA hemolysin. The truncated hemolysin A formed a right-handed parallel beta-helix with three adjoining segments of anti-parallel beta-sheet. A CXXC disulfide bond, four buried solvent molecules, and a carboxyamide ladder were all located at the third complete beta-helix coil. Replacement of the CXXC motif led to decreased activity and stability according to hemolysis and CD studies. Furthermore, the crystal structure revealed a sterically compatible, dry dimeric interface formed via anti-parallel beta-sheet interactions between neighboring beta-helix monomers. Laser scanning confocal microscopy further supported the unidirectional interconversion of full-length hemolysin A. From these results, a model has been proposed, where cooperative, beta-strand interactions between HpmA265 and neighboring full-length hemolysin A molecules, facilitated in part by the highly conserved CXXC pattern, account for the template-assisted hemolysis.


Asunto(s)
Proteínas Hemolisinas/química , Proteus mirabilis/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Dicroismo Circular , Disulfuros , Regulación Bacteriana de la Expresión Génica , Hemólisis , Microscopía Confocal/métodos , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Conformación Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína
17.
Protein Expr Purif ; 57(1): 9-16, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17964805

RESUMEN

Toluene 4-monooxygenase (T4MO) is a member of the bacterial multicomponent monooxygenases, an enzyme family that utilizes a soluble diiron hydroxylase to oxidize a variety of hydrocarbons as the initial step in their metabolism. The hydroxylases obtain reducing equivalents from NAD(P)H via an electron transfer chain that is initiated by an oxidoreductase containing an N-terminal ferredoxin domain and C-terminal flavin- and NAD-binding domains. T4moF, the NADH oxidoreductase of T4MO, was expressed as a soluble protein in Escherichia coli BL21(DE3) from the pUC-derived expression vector pRS205. This vector contains a lac promoter instead of a T7 promoter. A three step purification from the soluble cell lysate yielded approximately 1 mg of T4moF per gram of wet cell paste with greater than 90% purity. The purified protein contained 1 mol of FAD and 2 mol of Fe per mol of T4moF; quantitative EPR spectroscopy showed approximately 1 mol of the S=1/2 signal from the reduced [2Fe-2S] cluster per mol of T4moF. Steady state kinetic analysis of p-cresol formation activity treating T4moF as the variable substrate while all other proteins and substrates were held constant gave apparent K(M-) and apparent k(cat)-values of 0.15 microM and 3.0 s(-1), respectively. This expression system and purification allows for the recovery of the soluble oxidoreductase in yields that facilitate further biochemical and structural characterizations.


Asunto(s)
Oxidorreductasas/aislamiento & purificación , Oxidorreductasas/metabolismo , Oxigenasas/química , Cromatografía Líquida de Alta Presión , Colorimetría , Espectroscopía de Resonancia por Spin del Electrón , Electroforesis Capilar , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Flavina-Adenina Dinucleótido/análisis , Flavina-Adenina Dinucleótido/química , Vectores Genéticos , Calor , Concentración de Iones de Hidrógeno , Hidroxilación , Hierro/análisis , Hierro/química , Cinética , Peso Molecular , Oxidorreductasas/genética , Filogenia , Regiones Promotoras Genéticas , Desnaturalización Proteica , Solubilidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato
18.
Biochemistry ; 46(29): 8569-78, 2007 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-17602574

RESUMEN

Mammalian cysteine dioxygenase (CDO) is a non-heme iron metalloenzyme that catalyzes the first committed step in oxidative cysteine catabolism. The active site coordination of CDO comprises a mononuclear iron ligated by the Nepsilon atoms of three protein-derived histidines, thus representing a new variant on the 2-histidine-1-carboxylate (2H1C) facial triad motif. Nitric oxide was used as a spectroscopic probe in investigating the order of substrate-O2 binding by EPR spectroscopy. In these experiments, CDO exhibits an ordered binding of l-cysteine prior to NO (and presumably O2) similar to that observed for the 2H1C class of non-heme iron enzymes. Moreover, the CDO active site is essentially unreactive toward NO in the absence of substrate, suggesting an obligate ordered binding of l-cysteine prior to NO. Typically, addition of NO to a mononuclear non-heme iron center results in the formation of an {FeNO}7 (S = 3/2) species characterized by an axial EPR spectrum with gx, gy, and gz values of approximately 4, approximately 4, and approximately 2, respectively. However, upon addition of NO to CDO in the presence of substrate l-cysteine, a low-spin {FeNO}7 (S = 1/2) signal that accounts for approximately 85% of the iron within the enzyme develops. Similar {FeNO}7 (S = 1/2) EPR signals have been observed for a variety of octahedral mononuclear iron-nitrosyl synthetic complexes; however, this type of iron-nitrosyl species is not commonly observed for non-heme iron enzymes. Substitution of l-cysteine with isosteric substrate analogues cysteamine, 3-mercaptopropionic acid, and propane thiol did not produce any analogous {FeNO}7 signals (S = 1/2 or 3/2), thus reflecting the high substrate specificity of the enzyme observed by a number of researchers. The unusual {FeNO}7 (S = 1/2) electronic configuration adopted by the substrate-bound iron-nitrosyl CDO (termed {ES-NO}7) is a result of the bidentate thiol/amine coordination of l-cysteine in the NO-bound CDO active site. DFT computations were performed to further characterize this species. The DFT-predicted geometric parameters for {ES-NO}7 are in good agreement with the crystallographically determined substrate-bound active site configuration of CDO and are consistent with known iron-nitrosyl model complexes. Moreover, the computed EPR parameters (g and A values) are in excellent agreement with experimental results for this CDO species and those obtained from comparable synthetic {FeNO}7 (S = 1/2) iron-nitrosyl complexes.


Asunto(s)
Cisteína-Dioxigenasa/química , Hierro/química , Óxidos de Nitrógeno/química , Animales , Sitios de Unión , Catálisis , Cisteína/química , Cisteína/metabolismo , Cisteína-Dioxigenasa/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Hierro/análisis , Hierro/metabolismo , Cinética , Ratones , Modelos Moleculares , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxidos de Nitrógeno/metabolismo , Conformación Proteica , Especificidad por Sustrato
19.
J Struct Funct Genomics ; 8(4): 153-66, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17985212

RESUMEN

A simple approach that allows cost-effective automated purification of recombinant proteins in levels sufficient for functional characterization or structural studies is described. Studies with four human stem cell proteins, an engineered version of green fluorescent protein, and other proteins are included. The method combines an expression vector (pVP62K) that provides in vivo cleavage of an initial fusion protein, a factorial designed auto-induction medium that improves the performance of small-scale production, and rapid, automated metal affinity purification of His8-tagged proteins. For initial small-scale production screening, single colony transformants were grown overnight in 0.4 ml of auto-induction medium, produced proteins were purified using the Promega Maxwell 16, and purification results were analyzed by Caliper LC90 capillary electrophoresis. The yield of purified [U-15N]-His8-Tcl-1 was 7.5 microg/ml of culture medium, of purified [U-15N]-His8-GFP was 68 microg/ml, and of purified selenomethione-labeled AIA-GFP (His8 removed by treatment with TEV protease) was 172 microg/ml. The yield information obtained from a successful automated purification from 0.4 ml was used to inform the decision to scale-up for a second meso-scale (10-50 ml) cell growth and automated purification. 1H-15N NMR HSQC spectra of His8-Tcl-1 and of His8-GFP prepared from 50 ml cultures showed excellent chemical shift dispersion, consistent with well folded states in solution suitable for structure determination. Moreover, AIA-GFP obtained by proteolytic removal of the His8 tag was subjected to crystallization screening, and yielded crystals under several conditions. Single crystals were subsequently produced and optimized by the hanging drop method. The structure was solved by molecular replacement at a resolution of 1.7 A. This approach provides an efficient way to carry out several key target screening steps that are essential for successful operation of proteomics pipelines with eukaryotic proteins: examination of total expression, determination of proteolysis of fusion tags, quantification of the yield of purified protein, and suitability for structure determination.


Asunto(s)
Células Eucariotas/química , Proteínas/aislamiento & purificación , Secuencia de Aminoácidos , Animales , Automatización , Secuencia de Bases , Cromatografía de Afinidad , Cristalización , Electroforesis en Gel de Agar/métodos , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/aislamiento & purificación , Humanos , Ratones , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Plásmidos , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/aislamiento & purificación , Homología de Secuencia de Ácido Nucleico , Xenopus laevis
20.
Proc Natl Acad Sci U S A ; 103(9): 3084-9, 2006 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-16492780

RESUMEN

Cysteine dioxygenase (CDO) catalyzes the oxidation of l-cysteine to cysteine sulfinic acid. Deficiencies in this enzyme have been linked to autoimmune diseases and neurological disorders. The x-ray crystal structure of CDO from Mus musculus was solved to a nominal resolution of 1.75 Angstroms. The sequence is 91% identical to that of a human homolog. The structure reveals that CDO adopts the typical beta-barrel fold of the cupin superfamily. The NE2 atoms of His-86, -88, and -140 provide the metal binding site. The structure further revealed a covalent linkage between the side chains of Cys-93 and Tyr-157, the cysteine of which is conserved only in eukaryotic proteins. Metal analysis showed that the recombinant enzyme contained a mixture of iron, nickel, and zinc, with increased iron content associated with increased catalytic activity. Details of the predicted active site are used to present and discuss a plausible mechanism of action for the enzyme.


Asunto(s)
Cisteína-Dioxigenasa/química , Cisteína-Dioxigenasa/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Secuencia Conservada , Cristalografía por Rayos X , Cisteína-Dioxigenasa/genética , Humanos , Cinética , Ligandos , Metales/química , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Pliegue de Proteína , Estructura Terciaria de Proteína , Alineación de Secuencia , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda