Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cancer Sci ; 115(7): 2125-2137, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38651239

RESUMEN

Human cells possess many different polymerase enzymes, which collaborate in conducting DNA replication and genome maintenance to ensure faithful duplication of genetic material. Each polymerase performs a specialized role, together providing a balance of accuracy and flexibility to the replication process. Perturbed replication increases the requirement for flexibility to ensure duplication of the entire genome. Flexibility is provided via the use of error-prone polymerases, which maintain the progression of challenged DNA replication at the expense of mutagenesis, an enabling characteristic of cancer. This review describes our recent understanding of mechanisms that alter the usage of polymerases during tumorigenesis and examines the implications of this for cell survival and tumor progression. Although expression levels of polymerases are often misregulated in cancers, this does not necessarily alter polymerase usage since an additional regulatory step may govern the use of these enzymes. We therefore also examine how the regulatory mechanisms of DNA polymerases, such as Rad18-mediated PCNA ubiquitylation, may impact the functionalization of error-prone polymerases to tolerate oncogene-induced replication stress. Crucially, it is becoming increasingly evident that cancer cells utilize error-prone polymerases to sustain ongoing replication in response to oncogenic mutations which inactivate key DNA replication and repair pathways, such as BRCA deficiency. This accelerates mutagenesis and confers chemoresistance, but also presents a dependency that can potentially be exploited by therapeutics.


Asunto(s)
Carcinogénesis , Replicación del ADN , ADN Polimerasa Dirigida por ADN , Neoplasias , Humanos , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa Dirigida por ADN/genética , Carcinogénesis/genética , Neoplasias/genética , Neoplasias/patología , Animales , Antígeno Nuclear de Célula en Proliferación/metabolismo , Antígeno Nuclear de Célula en Proliferación/genética , Ubiquitinación , Mutagénesis , Reparación del ADN/genética
2.
DNA Repair (Amst) ; 141: 103740, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096696

RESUMEN

An organism's genomic DNA must be accurately duplicated during each cell cycle. DNA synthesis is catalysed by DNA polymerase enzymes, which extend nucleotide polymers in a 5' to 3' direction. This inherent directionality necessitates that one strand is synthesised forwards (leading), while the other is synthesised backwards discontinuously (lagging) to couple synthesis to the unwinding of duplex DNA. Eukaryotic cells possess many diverse polymerases that coordinate to replicate DNA, with the three main replicative polymerases being Pol α, Pol δ and Pol ε. Studies conducted in yeasts and human cells utilising mutant polymerases that incorporate molecular signatures into nascent DNA implicate Pol ε in leading strand synthesis and Pol α and Pol δ in lagging strand replication. Recent structural insights have revealed how the spatial organization of these enzymes around the core helicase facilitates their strand-specific roles. However, various challenging situations during replication require flexibility in the usage of these enzymes, such as during replication initiation or encounters with replication-blocking adducts. This review summarises the roles of the replicative polymerases in bulk DNA replication and explores their flexible and dynamic deployment to complete genome replication. We also examine how polymerase usage patterns can inform our understanding of global replication dynamics by revealing replication fork directionality to identify regions of replication initiation and termination.


Asunto(s)
Replicación del ADN , Humanos , ADN/metabolismo , ADN/biosíntesis , ADN Polimerasa Dirigida por ADN/metabolismo , Animales , ADN Polimerasa II/metabolismo , Eucariontes/enzimología , Eucariontes/genética , ADN Polimerasa III/metabolismo , Células Eucariotas/metabolismo , Células Eucariotas/enzimología , ADN Polimerasa I/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda