RESUMEN
The objective of this research is to examine the thermophysical features of magnetic parameter (Ha) and time step (τ) in a lid-driven cavity using a water-based Al2O3 nanofluid and the efficacy of ANN models in accurately predicting the average heat transfer rate. The Galerkin weighted residual approach is used to solve a set of dimensionless nonlinear governing equations. The Levenberg-Marquardt back propagation technique is used for training ANN using sparse simulated data. The findings of the investigation about the flow and thermal fields are shown. Furthermore, a comparative study and prediction have been conducted on the impact of manipulating factors on the average Nusselt number derived from the numerical heat transfer analysis. The findings of the research indicate that, in the absence of magnetohydrodynamics, a rise in the Hartmann number resulted in a drop in both the fluid velocity profile and magnitude. Conversely, it was observed that the temperature and Nusselt number exhibited an increase under these conditions. The mean temperature of the fluid rises as the Hartmann number drops, reaching a peak value of 0.114 when Ha = 0. The scenario where Ha = 0, representing the lack of magnetohydrodynamics, shows the highest average Nusselt number, whereas the instance with Ha = 45 presents the lowest Nusselt number. The ANN model has a high level of accuracy, as seen by an MSE value of 0.00069 and a MAE value of 0.0175, resulting in a 99% accuracy rate.
RESUMEN
The objective of the study is to investigate the fluid flow and heat transfer characteristics applying Artificial Neural Networks (ANN) analysis in triangular-shaped cavities for the analysis of magnetohydrodynamics (MHD) mixed convection with varying fluid velocity of water/Al2O3 nanofluid. No study has yet been conducted on this geometric configuration incorporating ANN analysis. Therefore, this study analyzes and predicts the complex interactions among fluid flow, heat transfer, and various influencing factors using ANN analysis. The process of finite element analysis was conducted, and the obtained results have been verified by previous literature. The Levenberg-Marquardt backpropagation technique was selected for ANN. Various values of the Richardson number (0.01 ≤ Ri ≤ 5), Hartmann number (0 ≤ Ha ≤ 100), Reynolds number (50 ≤ Re ≤ 200), and solid volume fraction of the nanofluid (Ï = 1%, 3% and 4%) have been selected. The ANN model incorporates the Gauss-Newton method and the method of damped least squares, making it suitable for tackling complex problems with a high degree of non-linearity and uncertainty. The findings have been shown through the use of streamlines, isotherm plots, Nusselt numbers, and the estimated Nusselt number obtained by ANN. Increasing the solid volume fraction improves the rate of heat transmission for all situations with varying values of Ri, Re, and Ha. The Nusselt number is greater with larger values of the Ri and Re parameters, but it lessens for higher value of Ha. Furthermore, ANN demonstrates exceptional precision, as evidenced by the Mean Squared Error and R values of 1.05200e-6 and 0.999988, respectively.