Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Glob Chang Biol ; 28(1): 245-266, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34653296

RESUMEN

Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.


Asunto(s)
Cambio Climático , Bosques , Biomasa , Clima , Temperatura
2.
Ecol Appl ; 31(6): e02383, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34042236

RESUMEN

Infrequent, high-intensity disturbances can have profound impacts on forested landscapes, changing forest structure and altering relative species abundance. However, due to their rarity and the logistical challenges of directly observing such extreme events, both the spatial variability of disturbance intensity and the species-specific responses to this variability are poorly understood. We used observed patterns of mortality across a fire severity gradient following the 2009 Black Saturday fires in southeastern Australia to simultaneously estimate (1) species- and size-specific susceptibility to fire-induced mortality and (2) fire intensity. We found broad variation in patterns of fire susceptibility among the 10 tree species (five eucalypts and five non-eucalypts) sufficiently abundant for analysis. Among the eucalypts, Eucalyptus obliqua was the most resistant to fire-induced mortality, with trees of ~25 cm DBH having a 50% probability of surviving even the most intense fires. In contrast, E. regnans had 100% mortality across all size classes when subjected to high-intensity fire. Basal resprouting occurred in six of the study species and, when accounted for, fundamentally changed the mortality profile of these species, highlighting the importance of resprouting as an adaptation to fire in these landscapes. In particular, the two iconic cool temperate rainforest species (Nothofagus cunninghami and Atherosperma moschatum) were strong resprouters (~45% of individuals were able to resprout after being top-killed by fire). We also found evidence for compositional shifts in regeneration above threshold values of fire intensity in cool temperate rainforest and mixed forest sites, both of which have important conservation values within these landscapes. The observed patterns of species- and size-specific susceptibility to fire-induced mortality may be used to anticipate changes in forest structure and composition in the future. In addition, they may also help guide forest management strategies that reduce the length of time individual trees are exposed to potentially lethal fires, thereby increasing the resilience of these forests to future fires.


Asunto(s)
Eucalyptus , Incendios , Australia , Bosques , Especificidad de la Especie , Árboles
3.
Proc Natl Acad Sci U S A ; 115(8): 1795-1800, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29434040

RESUMEN

Histidine biosynthesis is an essential process in plants and microorganisms, making it an attractive target for the development of herbicides and antibacterial agents. Imidazoleglycerol-phosphate dehydratase (IGPD), a key enzyme within this pathway, has been biochemically characterized in both Saccharomyces cerevisiae (Sc_IGPD) and Arabidopsis thaliana (At_IGPD). The plant enzyme, having been the focus of in-depth structural analysis as part of an inhibitor development program, has revealed details about the reaction mechanism of IGPD, whereas the yeast enzyme has proven intractable to crystallography studies. The structure-activity relationship of potent triazole-phosphonate inhibitors of IGPD has been determined in both homologs, revealing that the lead inhibitor (C348) is an order of magnitude more potent against Sc_IGPD than At_IGPD; however, the molecular basis of this difference has not been established. Here we have used single-particle electron microscopy (EM) to study structural differences between the At and Sc_IGPD homologs, which could influence the difference in inhibitor potency. The resulting EM maps at ∼3 Šare sufficient to de novo build the protein structure and identify the inhibitor binding site, which has been validated against the crystal structure of the At_IGPD/C348 complex. The structure of Sc_IGPD reveals that a 24-amino acid insertion forms an extended loop region on the enzyme surface that lies adjacent to the active site, forming interactions with the substrate/inhibitor binding loop that may influence inhibitor potency. Overall, this study provides insights into the IGPD family and demonstrates the power of using an EM approach to study inhibitor binding.


Asunto(s)
Proteínas de Arabidopsis/antagonistas & inhibidores , Arabidopsis/enzimología , Inhibidores Enzimáticos/química , Hidroliasas/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Saccharomyces cerevisiae/enzimología , Arabidopsis/química , Arabidopsis/efectos de los fármacos , Arabidopsis/ultraestructura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón , Cristalografía por Rayos X , Herbicidas/química , Hidroliasas/química , Hidroliasas/ultraestructura , Modelos Moleculares , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
4.
J Gerontol Nurs ; 47(10): 37-43, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34590973

RESUMEN

Hospital inpatient falls, especially of older adult patients, can result in injury and death and generate high costs. A new technology, PUP® (Patient Is Up) Smart Socks, combines sensors and geolocation in socks with a wireless platform. To determine whether these socks prevent falls of patients with high fall risk, we performed a clinical trial at one hospital, and an observational study at two other hospitals. In the clinical trial, patients spent 1,694 patient-days wearing the socks, reducing falls from 4 to 0 per 1,000 patient-days (p < 0.01). In the observational study, patients spent 2,286 patient-days wearing the socks, reducing falls from 4 to 1.3 per 1,000 patient-days (p < 0.05). The new technology resulted in a significant reduction in fall rates among patients with high fall risk and may greatly reduce inpatient fall-related injury and death and their associated costs. [Journal of Gerontological Nursing, 47(10), 37-43.].


Asunto(s)
Accidentes por Caídas , Pacientes Internos , Accidentes por Caídas/prevención & control , Anciano , Hospitales , Humanos , Tecnología
5.
J Biol Chem ; 294(48): 18077-18091, 2019 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-31624143

RESUMEN

Alginate is a polymer containing two uronic acid epimers, ß-d-mannuronate (M) and α-l-guluronate (G), and is a major component of brown seaweed that is depolymerized by alginate lyases. These enzymes have diverse specificity, cleaving the chain with endo- or exotype activity and with differential selectivity for the sequence of M or G at the cleavage site. Dp0100 is a 201-kDa multimodular, broad-specificity endotype alginate lyase from the marine thermophile Defluviitalea phaphyphila, which uses brown algae as a carbon source, converting it to ethanol, and bioinformatics analysis suggested that its catalytic domain represents a new polysaccharide lyase family, PL39. The structure of the Dp0100 catalytic domain, determined at 2.07 Å resolution, revealed that it comprises three regions strongly resembling those of the exotype lyase families PL15 and PL17. The conservation of key catalytic histidine and tyrosine residues belonging to the latter suggests these enzymes share mechanistic similarities. A complex of Dp0100 with a pentasaccharide, M5, showed that the oligosaccharide is located in subsites -2, -1, +1, +2, and +3 in a long, deep canyon open at both ends, explaining the endotype activity of this lyase. This contrasted with the hindered binding sites of the exotype enzymes, which are blocked such that only one sugar moiety can be accommodated at the -1 position in the catalytic site. The biochemical and structural analyses of Dp0100, the first for this new class of endotype alginate lyases, have furthered our understanding of the structure-function and evolutionary relationships within this important class of enzymes.


Asunto(s)
Proteínas Bacterianas/química , Clostridiales/enzimología , Polisacárido Liasas/química , Proteínas Bacterianas/genética , Clostridiales/genética , Cristalografía por Rayos X , Polisacárido Liasas/genética , Dominios Proteicos
6.
Biochem J ; 474(5): 667-681, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28008132

RESUMEN

Chlorophylls (Chls) are modified tetrapyrrole molecules, essential for photosynthesis. These pigments possess an isocyclic E ring formed by the Mg-protoporphyrin IX monomethylester cyclase (MgPME-cyclase). We assessed the in vivo effects of altering seven highly conserved residues within Ycf54, which is required for MgPME-cyclase activity in the cyanobacterium SynechocystisSynechocystis strains harbouring the Ycf54 alterations D39A, F40A and R82A were blocked to varying degrees at the MgPME-cyclase step, whereas the A9G mutation reduced Ycf54 levels by ∼75%. Wild-type (WT) levels of the cyclase subunit CycI are present in strains with D39A and F40A, but these strains have lowered cellular Chl and photosystem accumulation. CycI is reduced by ∼50% in A9G and R82A, but A9G has no perturbations in Chl or photosystem accumulation, whilst R82A contains very little Chl and few photosystems. When FLAG tagged and used as bait in pulldown experiments, the three mutants D39A, F40A and R82A were unable to interact with the MgPME-cyclase component CycI, whereas A9G pulled down a similar level of CycI as WT Ycf54. These observations suggest that a stable interaction between CycI and Ycf54 is required for unimpeded Pchlide biosynthesis. Crystal structures of the WT, A9G and R82A Ycf54 proteins were solved and analysed to investigate the structural effects of these mutations. A loss of the local hydrogen bonding network and a reversal in the surface charge surrounding residue R82 are probably responsible for the functional differences observed in the R82A mutation. We conclude that the Ycf54 protein must form a stable interaction with CycI to promote optimal Pchlide biosynthesis.


Asunto(s)
Proteínas Bacterianas/química , Oxigenasas/química , Subunidades de Proteína/química , Protoclorofilida/biosíntesis , Proteínas Recombinantes/química , Synechocystis/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Cristalografía por Rayos X , Ciclización , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Enlace de Hidrógeno , Mutagénesis Sitio-Dirigida , Oxigenasas/genética , Oxigenasas/metabolismo , Fotosíntesis/genética , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Estructura Secundaria de Proteína , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Protoclorofilida/química , Protoporfirinas/química , Protoporfirinas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Electricidad Estática , Synechocystis/enzimología
7.
Combust Flame ; 167: 452-462, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-29628525

RESUMEN

Thermodynamic equilibrium calculations, as well as perfectly-stirred reactor (PSR) simulations with detailed reaction kinetics, are performed for a potential halon replacement, C3H2F3Br (2-BTP, C3H2F3Br, 2-Bromo-3,3,3-trifluoropropene), to understand the reasons for the unexpected enhanced combustion rather than suppression in a mandated FAA test. The high pressure rise with added agent is shown to depend on the amount of agent, and is well-predicted by an equilibrium model corresponding to stoichiometric reaction of fuel, oxygen, and agent. A kinetic model for the reaction of C3H2F3Br in hydrocarbon-air flames has been applied to understand differences in the chemical suppression behavior of C3H2F3Br vs. CF3Br in the FAA test. Stirred-reactor simulations predict that in the conditions of the FAA test, the inhibition effectiveness of C3H2F3Br at high agent loadings is relatively insensitive to the overall stoichiometry (for fuel-lean conditions), and the marginal inhibitory effect of the agent is greatly reduced, so that the mixture remains flammable over a wide range of conditions. Most important, the flammability of the agent-air mixtures themselves (when compressively preheated), can support low-strain flames which are much more difficult to extinguish than the easy-to extinguish, high-strain primary fireball from the impulsively released fuel mixture. Hence, the exothermic reaction of halogenated hydrocarbons in air should be considered in other situations with strong ignition sources and low strain flows, especially at preheated conditions.

8.
Angew Chem Int Ed Engl ; 55(43): 13485-13489, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27717128

RESUMEN

Programs of drug discovery generally exploit one enantiomer of a chiral compound for lead development following the principle that enantiomer recognition is central to biological specificity. However, chiral promiscuity has been identified for a number of enzyme families, which have shown that mirror-image packing can enable opposite enantiomers to be accommodated in an enzyme's active site. Reported here is a series of crystallographic studies of complexes between an enzyme and a potent experimental herbicide whose chiral center forms an essential part of the inhibitor pharmacophore. Initial studies with a racemate at 1.85 Šresolution failed to identify the chirality of the bound inhibitor, however, by extending the resolution to 1.1 Šand by analyzing high-resolution complexes with the enantiopure compounds, we determined that both enantiomers make equivalent pseudosymmetric interactions in the active site, thus mimicking an achiral reaction intermediate.

9.
Glob Chang Biol ; 21(4): 1552-66, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25230693

RESUMEN

Reforestation has large potential for mitigating climate change through carbon sequestration. Native mixed-species plantings have a higher potential to reverse biodiversity loss than do plantations of production species, but there are few data on their capacity to store carbon. A chronosequence (5-45 years) of 36 native mixed-species plantings, paired with adjacent pastures, was measured to investigate changes to stocks among C pools following reforestation of agricultural land in the medium rainfall zone (400-800 mm yr(-1)) of temperate Australia. These mixed-species plantings accumulated 3.09 ± 0.85 t C ha(-1) yr(-1) in aboveground biomass and 0.18 ± 0.05 t C ha(-1) yr(-1) in plant litter, reaching amounts comparable to those measured in remnant woodlands by 20 years and 36 years after reforestation respectively. Soil C was slower to increase, with increases seen only after 45 years, at which time stocks had not reached the amounts found in remnant woodlands. The amount of trees (tree density and basal area) was positively associated with the accumulation of carbon in aboveground biomass and litter. In contrast, changes to soil C were most strongly related to the productivity of the location (a forest productivity index and soil N content in the adjacent pasture). At 30 years, native mixed-species plantings had increased the stability of soil C stocks, with higher amounts of recalcitrant C and higher C:N ratios than their adjacent pastures. Reforestation with native mixed-species plantings did not significantly change the availability of macronutrients (N, K, Ca, Mg, P, and S) or micronutrients (Fe, B, Mn, Zn, and Cu), content of plant toxins (Al, Si), acidity, or salinity (Na, electrical conductivity) in the soil. In this medium rainfall area, native mixed-species plantings provided comparable rates of C sequestration to local production species, with the probable additional benefit of providing better quality habitat for native biota. These results demonstrate that reforestation using native mixed-species plantings is an effective alternative for carbon sequestration to standard monocultures of production species in medium rainfall areas of temperate continental climates, where they can effectively store C, convert C into stable pools and provide greater benefits for biodiversity.


Asunto(s)
Biomasa , Secuestro de Carbono , Carbono/análisis , Conservación de los Recursos Naturales , Suelo/química , Biodiversidad , Cambio Climático , Eucalyptus/crecimiento & desarrollo , Agricultura Forestal , Estaciones del Año , Árboles , Victoria
10.
Ecol Lett ; 17(7): 855-65, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24805976

RESUMEN

Long-term surveys of entire communities of species are needed to measure fluctuations in natural populations and elucidate the mechanisms driving population dynamics and community assembly. We analysed changes in abundance of over 4000 tree species in 12 forests across the world over periods of 6-28 years. Abundance fluctuations in all forests are large and consistent with population dynamics models in which temporal environmental variance plays a central role. At some sites we identify clear environmental drivers, such as fire and drought, that could underlie these patterns, but at other sites there is a need for further research to identify drivers. In addition, cross-site comparisons showed that abundance fluctuations were smaller at species-rich sites, consistent with the idea that stable environmental conditions promote higher diversity. Much community ecology theory emphasises demographic variance and niche stabilisation; we encourage the development of theory in which temporal environmental variance plays a central role.


Asunto(s)
Modelos Biológicos , Árboles/fisiología , Ambiente , Dinámica Poblacional , Factores de Tiempo
11.
Oecologia ; 174(4): 1449-61, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24352845

RESUMEN

Climate change effects on growth rates of tropical trees may lead to alterations in carbon cycling of carbon-rich tropical forests. However, climate sensitivity of broad-leaved lowland tropical trees is poorly understood. Dendrochronology (tree-ring analysis) provides a powerful tool to study the relationship between tropical tree growth and annual climate variability. We aimed to establish climate-growth relationships for five annual-ring forming tree species, using ring-width data from 459 canopy and understory trees from a seasonal tropical forest in western Thailand. Based on 183/459 trees, chronologies with total lengths between 29 and 62 years were produced for four out of five species. Bootstrapped correlation analysis revealed that climate-growth responses were similar among these four species. Growth was significantly negatively correlated with current-year maximum and minimum temperatures, and positively correlated with dry-season precipitation levels. Negative correlations between growth and temperature may be attributed to a positive relationship between temperature and autotrophic respiration rates. The positive relationship between growth and dry-season precipitation levels likely reflects the strong water demand during leaf flush. Mixed-effect models yielded results that were consistent across species: a negative effect of current wet-season maximum temperatures on growth, but also additive positive effects of, for example, prior dry-season maximum temperatures. Our analyses showed that annual growth variability in tropical trees is determined by a combination of both temperature and precipitation variability. With rising temperature, the predominantly negative relationship between temperature and growth may imply decreasing growth rates of tropical trees as a result of global warming.


Asunto(s)
Cambio Climático , Lluvia , Temperatura , Árboles/crecimiento & desarrollo , Clima Tropical , Carbono , Ciclo del Carbono , Modelos Lineales , Tailandia , Árboles/fisiología , Agua
12.
Commun Biol ; 7(1): 909, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39068257

RESUMEN

Metabolic regulation occurs through precise control of enzyme activity. Allomorphy is a post-translational fine control mechanism where the catalytic rate is governed by a conformational switch that shifts the enzyme population between forms with different activities. ß-Phosphoglucomutase (ßPGM) uses allomorphy in the catalysis of isomerisation of ß-glucose 1-phosphate to glucose 6-phosphate via ß-glucose 1,6-bisphosphate. Herein, we describe structural and biophysical approaches to reveal its allomorphic regulatory mechanism. Binding of the full allomorphic activator ß-glucose 1,6-bisphosphate stimulates enzyme closure, progressing through NAC I and NAC III conformers. Prior to phosphoryl transfer, loops positioned on the cap and core domains are brought into close proximity, modulating the environment of a key proline residue. Hence accelerated isomerisation, likely via a twisted anti/C4-endo transition state, leads to the rapid predominance of active cis-P ßPGM. In contrast, binding of the partial allomorphic activator fructose 1,6-bisphosphate arrests ßPGM at a NAC I conformation and phosphoryl transfer to both cis-P ßPGM and trans-P ßPGM occurs slowly. Thus, allomorphy allows a rapid response to changes in food supply while not otherwise impacting substantially on levels of important metabolites.


Asunto(s)
Dominio Catalítico , Fosfoglucomutasa , Prolina , Fosfoglucomutasa/metabolismo , Fosfoglucomutasa/química , Fosfoglucomutasa/genética , Prolina/metabolismo , Prolina/química , Isomerismo , Glucofosfatos/metabolismo , Conformación Proteica , Humanos , Catálisis , Modelos Moleculares , Glucosa-6-Fosfato/análogos & derivados
13.
Artículo en Inglés | MEDLINE | ID: mdl-24316835

RESUMEN

Coccidiosis in chickens is caused by the apicomplexan parasite Eimeria tenella and is thought to involve a role for a superfamily of more than 20 cysteine-rich surface antigen glycoproteins (SAGs) in host-parasite interactions. A representative member of the family, SAG19, has been overexpressed in Escherichia coli, purified and crystallized by the hanging-drop method of vapour diffusion using ammonium sulfate as the precipitant. Crystals of SAG19 diffracted to beyond 1.50 Å resolution and belonged to space group I4, with unit-cell parameters a = b = 108.2, c = 37.5 Å. Calculation of possible values of VM suggests that there is a single molecule in the asymmetric unit.


Asunto(s)
Antígenos de Superficie/química , Eimeria tenella/química , Proteínas Protozoarias/química , Secuencia de Aminoácidos , Sulfato de Amonio/química , Antígenos de Superficie/genética , Antígenos de Superficie/metabolismo , Cristalización , Cristalografía por Rayos X , Eimeria tenella/genética , Eimeria tenella/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Datos de Secuencia Molecular , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
14.
Artículo en Inglés | MEDLINE | ID: mdl-22442241

RESUMEN

The gene encoding the L1 ribosomal protein from Burkholderia pseudomallei strain D286 has been cloned into the pETBLUE-1 vector system, overexpressed in Escherichia coli and purified. Crystals of the native protein were grown by the hanging-drop vapour-diffusion technique using PEG 3350 as a precipitant and diffracted to beyond 1.65 Å resolution. The crystals belonged to space group P2(1)2(1)2, with unit-cell parameters a = 53.6, b = 127.1, c = 31.8 Å and with a single molecule in the asymmetric unit.


Asunto(s)
Burkholderia pseudomallei/química , Proteínas Ribosómicas/química , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Proteínas Ribosómicas/aislamiento & purificación
15.
Artículo en Inglés | MEDLINE | ID: mdl-22869122

RESUMEN

bpsl0128, a gene encoding a putative response regulator from Burkholderia pseudomallei strain D286, has been cloned into a pETBLUE-1 vector system, overexpressed in Escherichia coli and purified. The full-length protein is degraded during purification to leave a fragment corresponding to the putative receiver domain, and crystals of this protein that diffracted to beyond 1.75 Šresolution have been grown by the hanging-drop vapour-diffusion technique using PEG 6000 as the precipitant. The crystals belonged to one of the enantiomorphic pair of space groups P3(1)21 and P3(2)21, with unit-cell parameters a = b = 65.69, c = 105.01 Šand either one or two molecules in the asymmetric unit.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia pseudomallei/química , Proteínas de Transporte de Membrana/química , Secuencia de Aminoácidos , Cristalización , Cristalografía por Rayos X , Datos de Secuencia Molecular , Alineación de Secuencia , Homología de Secuencia de Aminoácido
16.
Proc Natl Acad Sci U S A ; 106(3): 779-84, 2009 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-19131516

RESUMEN

Despite being the subject of intensive investigations, many aspects of the mechanism of the zinc-dependent medium chain alcohol dehydrogenase (MDR) superfamily remain contentious. We have determined the high-resolution structures of a series of binary and ternary complexes of glucose dehydrogenase, an MDR enzyme from Haloferax mediterranei. In stark contrast to the textbook MDR mechanism in which the zinc ion is proposed to remain stationary and attached to a common set of protein ligands, analysis of these structures reveals that in each complex, there are dramatic differences in the nature of the zinc ligation. These changes arise as a direct consequence of linked movements of the zinc ion, a zinc-bound bound water molecule, and the substrate during progression through the reaction. These results provide evidence for the molecular basis of proton traffic during catalysis, a structural explanation for pentacoordinate zinc ion intermediates, a unifying view for the observed patterns of metal ligation in the MDR family, and highlight the importance of dynamic fluctuations at the metal center in changing the electrostatic potential in the active site, thereby influencing the proton traffic and hydride transfer events.


Asunto(s)
Alcohol Deshidrogenasa/química , Haloferax mediterranei/enzimología , Zinc/química , Sitios de Unión , Catálisis , Glucosa 1-Deshidrogenasa/química , NADP/química
17.
Commun Biol ; 5(1): 272, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35347220

RESUMEN

Burkholderia pseudomallei lethal factor 1 (BLF1) exhibits site-specific glutamine deamidase activity against the eukaryotic RNA helicase, eIF4A, thereby blocking mammalian protein synthesis. The structure of a complex between BLF1 C94S and human eIF4A shows that the toxin binds in the cleft between the two RecA-like eIF4A domains forming interactions with residues from both and with the scissile amide of the target glutamine, Gln339, adjacent to the toxin active site. The RecA-like domains adopt a radically twisted orientation compared to other eIF4A structures and the nature and position of conserved residues suggests this may represent a conformation associated with RNA binding. Comparison of the catalytic site of BLF1 with other deamidases and cysteine proteases reveals that they fall into two classes, related by pseudosymmetry, that present either the re or si faces of the target amide/peptide to the nucleophilic sulfur, highlighting constraints in the convergent evolution of their Cys-His active sites.


Asunto(s)
Burkholderia , Factor 4A Eucariótico de Iniciación , Amidas , Animales , Burkholderia/genética , Burkholderia/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Glutamina/metabolismo , Humanos , Mamíferos , Biosíntesis de Proteínas
18.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 12): 1623-6, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-22139182

RESUMEN

Burkholderia pseudomallei BPSL1549, a putative protein of unknown function, has been overexpressed in Escherichia coli, purified and subsequently crystallized by the hanging-drop vapour-diffusion method using PEG as a precipitant to give crystals with overall dimensions of 0.15 × 0.15 × 0.1 mm. Native data were collected to 1.47 Å resolution at the European Synchrotron Radiation Facility (ESRF). The crystals belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 37.1, b = 45.4, c = 111.9 Å and with a single polypeptide chain in the asymmetric unit.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia pseudomallei/química , Proteínas Bacterianas/aislamiento & purificación , Clonación Molecular , Cristalografía por Rayos X
19.
Ecol Evol ; 11(24): 18401-18421, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35003680

RESUMEN

Herbivore foraging decisions are closely related to plant nutritional quality. For arboreal folivores with specialized diets, such as the vulnerable greater glider (Petauroides volans), the abundance of suitable forage trees can influence habitat suitability and species occurrence. The ability to model and map foliar nitrogen would therefore enhance our understanding of folivore habitat use at finer scales. We tested whether high-resolution multispectral imagery, collected by a lightweight and low-cost commercial unoccupied aerial vehicle (UAV), could be used to predict total and digestible foliar nitrogen (N and digN) at the tree canopy level and forest stand-scale from leaf-scale chemistry measurements across a gradient of mixed-species Eucalyptus forests in southeastern Australia. We surveyed temperate Eucalyptus forests across an elevational and topographic gradient from sea level to high elevation (50-1200 m a.s.l.) for forest structure, leaf chemistry, and greater glider occurrence. Using measures of multispectral leaf reflectance and spectral indices, we estimated N and digN and mapped N and favorable feeding habitat using machine learning algorithms. Our surveys covered 17 Eucalyptus species ranging in foliar N from 0.63% to 1.92% dry matter (DM) and digN from 0.45% to 1.73% DM. Both multispectral leaf reflectance and spectral indices were strong predictors for N and digN in model cross-validation. At the tree level, 79% of variability between observed and predicted measures of nitrogen was explained. A spatial supervised classification model correctly identified 80% of canopy pixels associated with high N concentrations (≥1% DM). We developed a successful method for estimating foliar nitrogen of a range of temperate Eucalyptus species using UAV multispectral imagery at the tree canopy level and stand scale. The ability to spatially quantify feeding habitat using UAV imagery allows remote assessments of greater glider habitat at a scale relevant to support ground surveys, management, and conservation for the vulnerable greater glider across southeastern Australia.

20.
Sci Rep ; 11(1): 18337, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526586

RESUMEN

Compound climate extremes (CCEs) can have significant and persistent environmental impacts on ecosystems. However, knowledge of the occurrence of CCEs beyond the past ~ 50 years, and hence their ecological impacts, is limited. Here, we place the widespread 2015-16 mangrove dieback and the more recent 2020 inland native forest dieback events in northern Australia into a longer historical context using locally relevant palaeoclimate records. Over recent centuries, multiple occurrences of analogous antecedent and coincident climate conditions associated with the mangrove dieback event were identified in this compilation. However, rising sea level-a key antecedent condition-over the three decades prior to the mangrove dieback is unprecedented in the past 220 years. Similarly, dieback in inland forests and savannas was associated with a multi-decadal wetting trend followed by the longest and most intense drought conditions of the past 250 years, coupled with rising temperatures. While many ecological communities may have experienced CCEs in past centuries, the addition of new environmental stressors associated with varying aspects of global change may exceed their thresholds of resilience. Palaeoclimate compilations provide the much-needed longer term context to better assess frequency and changes in some types of CCEs and their environmental impacts.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda