Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Publication year range
1.
Astrobiology ; 20(6): 785-814, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32466662

RESUMEN

On November 5-8, 2019, the "Mars Extant Life: What's Next?" conference was convened in Carlsbad, New Mexico. The conference gathered a community of actively publishing experts in disciplines related to habitability and astrobiology. Primary conclusions are as follows: A significant subset of conference attendees concluded that there is a realistic possibility that Mars hosts indigenous microbial life. A powerful theme that permeated the conference is that the key to the search for martian extant life lies in identifying and exploring refugia ("oases"), where conditions are either permanently or episodically significantly more hospitable than average. Based on our existing knowledge of Mars, conference participants highlighted four potential martian refugium (not listed in priority order): Caves, Deep Subsurface, Ices, and Salts. The conference group did not attempt to reach a consensus prioritization of these candidate environments, but instead felt that a defensible prioritization would require a future competitive process. Within the context of these candidate environments, we identified a variety of geological search strategies that could narrow the search space. Additionally, we summarized a number of measurement techniques that could be used to detect evidence of extant life (if present). Again, it was not within the scope of the conference to prioritize these measurement techniques-that is best left for the competitive process. We specifically note that the number and sensitivity of detection methods that could be implemented if samples were returned to Earth greatly exceed the methodologies that could be used at Mars. Finally, important lessons to guide extant life search processes can be derived both from experiments carried out in terrestrial laboratories and analog field sites and from theoretical modeling.


Asunto(s)
Exobiología , Medio Ambiente Extraterrestre , Marte , Cuevas , Simulación por Computador , Hielo , Vuelo Espacial
2.
J Microbiol Methods ; 43(2): 81-90, 2000 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-11121606

RESUMEN

A microscopy-based method was developed to distinguish naphthalene-degrading bacteria within the microbial community of a coal tar-contaminated groundwater system. Pure cultures of Pseudomonas putida NCIB 9816-4 were used to develop the substrate responsive-direct viable count (SR-DVC) method. Cells were concentrated on membrane filters, placed on agar plates of Stanier's minimal basal salts media containing antibiotics (nalidixic acid, piromidic acid, pipemidic acid, and cephalexin), and exposed to vapors of naphthalene. Following brief incubation, samples were fixed in 2% formaldehyde and examined by epifluorescent microscopy. Pure cultures displayed the expected cell elongation response to the SR-DVC assay and required a minimum incubation time of 9 h for differentiation of elongated cells. When applied to groundwater samples from the study site, naphthalene responsive cells in the groundwater community were easily distinguished from unresponsive cells and debris (350+/-180 substrate responsive cells/ml, relative to negative controls with no added growth substrate). In an attempt to reduce background counts of elongated bacteria and fungi, the SR-DVC procedure was modified by adding a wash step prior to incubation and a fungal inhibitor, cyclohexamide, to the plates. When groundwater samples were subjected to the modified procedure, only cells in washed samples showed a significant response to naphthalene (150+/-25 cells/ml), indicating the presence of inhibitory substances in the groundwater. Variations in response of the groundwater microbial community to the two SR-DVC procedures suggest that subsurface conditions (microbial and chemical composition) vary temporally. SR-DVC allows the phenotypes of individual naturally occurring cells to be assessed.


Asunto(s)
Bacterias/citología , Técnicas Bacteriológicas , Alquitrán , Naftalenos/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Ecología , Pseudomonas putida/citología
3.
Astrobiology ; 8(3): 623-38, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18680412

RESUMEN

A scientific drilling expedition to the High Lake region of Nunavut, Canada, was recently completed with the goals of collecting samples and delineating gradients in salinity, gas composition, pH, pe, and microbial abundance in a 400 m thick permafrost zone and accessing the underlying pristine subpermafrost brine. With a triple-barrel wireline tool and the use of stringent quality assurance and quality control (QA/QC) protocols, 200 m of frozen, Archean, mafic volcanic rock was collected from the lower boundary that separates the permafrost layer and subpermafrost saline water. Hot water was used to remove cuttings and prevent the drill rods from freezing in place. No cryopegs were detected during penetration through the permafrost. Coring stopped at the 535 m depth, and the drill water was bailed from the hole while saline water replaced it. Within 24 hours, the borehole iced closed at 125 m depth due to vapor condensation from atmospheric moisture and, initially, warm water leaking through the casing, which blocked further access. Preliminary data suggest that the recovered cores contain viable anaerobic microorganisms that are not contaminants even though isotopic analyses of the saline borehole water suggests that it is a residue of the drilling brine used to remove the ice from the upper, older portion of the borehole. Any proposed coring mission to Mars that seeks to access subpermafrost brine will not only require borehole stability but also a means by which to generate substantial heating along the borehole string to prevent closure of the borehole from condensation of water vapor generated by drilling.


Asunto(s)
Planeta Tierra , Medio Ambiente Extraterrestre/química , Cubierta de Hielo/química , Marte , Aerobiosis , Autorradiografía , Bacterias/aislamiento & purificación , Calcio/análisis , Cloruros/análisis , Fluorocarburos/química , Agua Dulce , Procesos Heterotróficos , Isótopos , Microesferas , Fosfolípidos/análisis , Comunicaciones por Satélite , Sodio/análisis , Agua/química
4.
Microb Ecol ; 44(2): 95-106, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12087425

RESUMEN

Microbial diversity in four wells along a groundwater flowpath in a coal-tar-waste-contaminated aquifer was examined using RFLP analysis of both 16S rDNA and naphthalene dioxygenase (NDO) genes. Amplified ribosomal DNA restriction analysis (ARDRA) relied upon eubacteria-specific primers to generate four clone libraries. From each library, 100 clones were randomly picked for analysis. Sixty percent of 400 clones contained unique ARDRA patterns. Diversity indices calculated for each community were high (Shannon-Weaver, H = 3.53 to 3.69). Clones representing ARDRA patterns found in the highest abundance were sequenced (31 total). Sequences related to aerobic bacteria (e.g., Nitrospira, Methylomonas, and Gallionella) predominated among those retrieved from the uncontaminated area of the site, whereas sequences related to facultatively aerobic and anaerobic bacteria (e.g. Azoarcus, Syntrophus, and Desulfotomaculum) predominated among those retrieved from contaminated areas of the site. Using NDO-specific primers and low-stringency PCR conditions, variability in RFLP patterns was only detected in community-derived DNA (3 of 4 wells) and not in 5 newly isolated naphthalene-degrading pure cultures. The ARDRA patterns of the pure culture isolates were not found in the clone libraries. Polymorphisms in community 16S rDNA and NDO genes found in well-water microorganisms reflected distinctive geochemical conditions across the site. Sequences related to sulfate-reducing bacteria were found in groundwater that contained sulfide, while sequences related to Gallionella, Syntrophus, and nitrate-reducing aromatic hydrocarbon-degrading bacteria were found in groundwater that contained ferrous iron, methane, and naphthalene, respectively.


Asunto(s)
Bacterias Aerobias/genética , Carbón Mineral , ADN Bacteriano/análisis , Variación Genética , Complejos Multienzimáticos/genética , Oxigenasas/genética , Abastecimiento de Agua , Bacterias Aerobias/fisiología , Dioxigenasas , Complejos Multienzimáticos/farmacología , Oxigenasas/farmacología , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Dinámica Poblacional , Eliminación de Residuos Líquidos , Microbiología del Agua
5.
Appl Environ Microbiol ; 65(1): 80-7, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-9872763

RESUMEN

We developed procedures for isolating and characterizing in situ-transcribed mRNA from groundwater microorganisms catabolizing naphthalene at a coal tar waste-contaminated site. Groundwater was pumped through 0.22-microm-pore-size filters, which were then frozen in dry ice-ethanol. RNA was extracted from the frozen filters by boiling sodium dodecyl sulfate lysis and acidic phenol-chloroform extraction. Transcript characterization was performed with a series of PCR primers designed to amplify nahAc homologs. Several primer pairs were found to amplify nahAc homologs representing the entire diversity of the naphthalene-degrading genes. The environmental RNA extract was reverse transcribed, and the resultant mixture of cDNAs was amplified by PCR. A digoxigenin-labeled probe mixture was produced by PCR amplification of groundwater cDNA. This probe mixture hybridized under stringent conditions with the corresponding PCR products from naphthalene-degrading bacteria carrying a variety of nahAc homologs, indicating that diverse dioxygenase transcripts had been retrieved from groundwater. Diluted and undiluted cDNA preparations were independently amplified, and 28 of the resulting PCR products were cloned and sequenced. Sequence comparisons revealed two major groups related to the dioxygenase genes ndoB and dntAc, previously cloned from Pseudomonas putida NCIB 9816-4 and Burkholderia sp. strain DNT, respectively. A distinctive subgroup of sequences was found only in experiments performed with the undiluted cDNA preparation. To our knowledge, these results are the first to directly document in situ transcription of genes encoding naphthalene catabolism at a contaminated site by indigenous microorganisms. The retrieved sequences represent greater diversity than has been detected at the study site by culture-based approaches.


Asunto(s)
Genes Bacterianos , Complejos Multienzimáticos/genética , Oxigenasas/genética , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , ARN Mensajero/genética , ARN Mensajero/aislamiento & purificación , Microbiología del Agua , Bacterias/genética , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Secuencia de Bases , Biodegradación Ambiental , Burkholderia/enzimología , Burkholderia/genética , Clonación Molecular , Cartilla de ADN/genética , Dioxigenasas , Expresión Génica , Datos de Secuencia Molecular , Naftalenos/metabolismo , Pseudomonas putida/enzimología , Pseudomonas putida/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
6.
Microb Ecol ; 44(2): 107-17, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12087424

RESUMEN

We used geochemical analyses of groundwater and laboratory-incubated microcosms to investigate the physiological responses of naturally occurring microorganisms to coal-tar-waste constituents in a contaminated aquifer. Waters were sampled from wells along a natural hydrologic gradient extending from uncontaminated (1 well) into contaminated (3 wells) zones. Groundwater analyses determined the concentrations of carbon and energy sources (pollutants or total organic carbon), final electron acceptors (oxygen, nitrate, sulfate), and metabolic byproducts (dissolved inorganic carbon [DIC], alkalinity, methane, ferrous iron, sulfide, Mn2+). In the contaminated zone of the study site, concentrations of methane, hydrogen, alkalinity, and DIC were enhanced, while dissolved oxygen and nitrate were depleted. Field-initiated biodegradation assays using headspace-free serum bottle microcosms filled with groundwater examined metabolism of the ambient organic contaminants (naphthalene, 2-methylnaphthalene, benzothiophene, and indene) by the native microbial communities. Unamended microcosms from the contaminated zone demonstrated the simultaneous degradation of several coal-tar-waste constituents at the in situ temperature (10 degrees C). Lag phases prior to the onset of biodegradation indicated the prevalence of both aerobic and anaerobic conditions in situ. Electron acceptor-amended microcosms from the most contaminated well waters demonstrated only aerobic naphthalene degradation. Collectively, the geochemical and microbial evidence show that biodegradation of coal-tar-waste constituents occurs via both aerobic and anaerobic terminal electron accepting processes at this site.


Asunto(s)
Bacterias Aerobias/fisiología , Bacterias Anaerobias/fisiología , Carbón Mineral , Eliminación de Residuos , Contaminantes del Suelo/metabolismo , Contaminantes del Agua/metabolismo , Abastecimiento de Agua , Biodegradación Ambiental , Ecosistema , Modelos Teóricos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda