Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Macromol Rapid Commun ; : e2400542, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073729

RESUMEN

Controlling hybrid material properties by simple monomer design offers an elegant pathway to prepare thermoset adhesives with tunable properties. Herein, biobased hybrid polyhydroxyurethane/polyepoxy is prepared starting from partially carbonated cashew nut shell epoxy derivatives (NC514) and m-xylene diamine (MXDA). The curing reactions, that is, epoxy-amine and cyclic carbonate aminolysis, monitored by ATR-IR spectroscopy at 50 °C are found to be concomitant yielding highly homogeneous materials. Hybrid networks are extensively characterized by swelling tests, TGA, DMA, DSC, tensile tests, rheology, and lap-shear-test on aluminum substrates. The introduction of hydroxyurethane moieties within the epoxy-amine networks enhanced the adhesion properties (up to 20% compare to neat epoxy resins) by combining hydrogen bonding capability and vitrimeric properties (thermoset able to flow). Rheological characterizations and reprocessing tests demonstrated that hybrid adhesives with up to 47 mol% of cyclic carbonate groups are capable of covalent exchange (internally catalyzed by tertiary amine) while keeping similar thermomechanical properties and enhanced adhesion strength compare to the permanent epoxy network.

2.
Biomacromolecules ; 22(11): 4544-4551, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34618426

RESUMEN

Commercially available lipase from Pseudomonas stutzeri (lipase TL) is investigated as a biocatalyst for the formation of an acid-epoxy chemical network. Molecular model reactions are performed by reacting 2-phenyl glycidyl ether and hexanoic acid in bulk, varying two parameters: temperature and water content. Characterizations of the formed products by 1H NMR spectroscopy and gas chromatography-mass spectrometry combined with enzymatic assays confirm that lipase TL is able to simultaneously promote acid-epoxy addition and transesterification reactions below 100 °C and solely the acid-epoxy addition after denaturation at T > 100 °C. A prototype bio-based chemical network with ß-hydroxyester links was obtained using resorcinol diglycidyl ether and sebacic acid as monomers with lipase TL as catalyst. Differential scanning calorimetry, attenuated total reflection, and swelling analysis confirm gelation of the network.


Asunto(s)
Resinas Epoxi , Lipasa , Catálisis , Esterificación , Lipasa/metabolismo , Temperatura
3.
ACS Macro Lett ; 12(3): 338-343, 2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36802496

RESUMEN

The preparation and reprocessing of an epoxy vitrimer material is performed in a fully biocatalyzed process wherein network formation and exchange reactions are promoted by a lipase enzyme. Binary phase diagrams are introduced to select suitable diacid/diepoxide monomer compositions overcoming the limitations (phase separation/sedimentation) imposed by curing temperature inferior than 100 °C, to protect the enzyme. The ability of lipase TL, embedded in the chemical network, to catalyze efficiently exchange reactions (transesterification) is demonstrated by combining multiple stress relaxation experiments at 70-100 °C and complete recovery of mechanical strength after several reprocessing assays (up to 3 times). Complete stress relaxation ability disappears after heating at 150 °C, due to enzyme denaturation. Transesterification vitrimers thus designed are complementary to those involving classical catalysis (e.g., using the organocatalyst triazabicyclodecene) for which complete stress relaxation is possible only at high temperature.

4.
Nanoscale ; 14(12): 4635-4643, 2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35262129

RESUMEN

The development of highly active and selective heterogeneous-based catalysts with tailorable properties is not only a fundamental challenge, but is also crucial in the context of energy savings and sustainable chemistry. Here, we show that ruthenium nanoparticles (RuNPs) stabilised with simple polymerised ionic liquids (PILs) based on N-vinyl imidazolium led to highly active and robust nano-catalysts in hydrogenation reactions, both in water and organic media. Of particular interest, their activity and selectivity could simply be manipulated through counter-anion exchange reactions. Hence, as a proof of concept, the activity of RuNPs could be reversibly turned on and off in the hydrogenation of toluene, while in the case of styrene, the hydrogenation could be selectively switched from ethylbenzene to ethylcyclohexane upon anion metathesis. According to X-ray photoelectron spectroscopy (XPS) and dynamic light scattering (DLS) analyses, these effects could originate not only from the relative hydrophobicity and solvation of the PIL corona but also from the nature and strength of the PIL-Ru interactions.

5.
Chem Commun (Camb) ; 52(62): 9719-22, 2016 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-27411406

RESUMEN

The ring-opening polymerization of N-tosyl aziridines, in the presence of 1,3-bis(isopropyl)-4,5(dimethyl)imidazol-2-ylidene as an organocatalyst and an N-tosyl secondary amine as initiator mimicking the growing chain, provides the first metal-free route to well defined poly(aziridine)s (PAz) and related PAz-based block copolymers.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda