Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Perioper Med (Lond) ; 13(1): 66, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38956723

RESUMEN

OBJECTIVE: This paper presents a comprehensive analysis of perioperative patient deterioration by developing predictive models that evaluate unanticipated ICU admissions and in-hospital mortality both as distinct and combined outcomes. MATERIALS AND METHODS: With less than 1% of cases resulting in at least one of these outcomes, we investigated 98 features to identify their role in predicting patient deterioration, using univariate analyses. Additionally, multivariate analyses were performed by employing logistic regression (LR) with LASSO regularization. We also assessed classification models, including non-linear classifiers like Support Vector Machines, Random Forest, and XGBoost. RESULTS: During evaluation, careful attention was paid to the data imbalance therefore multiple evaluation metrics were used, which are less sensitive to imbalance. These metrics included the area under the receiver operating characteristics, precision-recall and kappa curves, and the precision, sensitivity, kappa, and F1-score. Combining unanticipated ICU admissions and mortality into a single outcome improved predictive performance overall. However, this led to reduced accuracy in predicting individual forms of deterioration, with LR showing the best performance for the combined prediction. DISCUSSION: The study underscores the significance of specific perioperative features in predicting patient deterioration, especially revealed by univariate analysis. Importantly, interpretable models like logistic regression outperformed complex classifiers, suggesting their practicality. Especially, when combined in an ensemble model for predicting multiple forms of deterioration. These findings were mostly limited by the large imbalance in data as post-operative deterioration is a rare occurrence. Future research should therefore focus on capturing more deterioration events and possibly extending validation to multi-center studies. CONCLUSIONS: This work demonstrates the potential for accurate prediction of perioperative patient deterioration, highlighting the importance of several perioperative features and the practicality of interpretable models like logistic regression, and ensemble models for the prediction of several outcome types. In future clinical practice these data-driven prediction models might form the basis for post-operative risk stratification by providing an evidence-based assessment of risk.

2.
Comput Methods Programs Biomed ; 230: 107333, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640603

RESUMEN

BACKGROUND AND OBJECTIVE: Mechanical ventilation is a lifesaving treatment for critically ill patients in an Intensive Care Unit (ICU) or during surgery. However, one potential harm of mechanical ventilation is related to patient-ventilator asynchrony (PVA). PVA can cause discomfort to the patient, damage to the lungs, and an increase in the length of stay in the ICU and on the ventilator. Therefore, automated detection algorithms are being developed to detect and classify PVAs, with the goal of optimizing mechanical ventilation. However, the development of these algorithms often requires large labeled datasets; these are generally difficult to obtain, as their collection and labeling is a time-consuming and labor-intensive task, which needs to be performed by clinical experts. METHODS: In this work, we aimed to develop a computer algorithm for the automatic detection and classification of PVA. The algorithm employs a neural network for the detection of the breath of the patient. The development of the algorithm was aided by simulations from a recently published model of the patient-ventilator interaction. RESULTS: The proposed method was effective, providing an algorithm with reliable detection and classification results of over 90% accuracy. Besides presenting a detection and classification algorithm for a variety of PVAs, here we show that using simulated data in combination with clinical data increases the variability in the training dataset, leading to a gain in performance and generalizability. CONCLUSIONS: In the future, these algorithms can be utilized to gain a better understanding of the clinical impact of PVAs and help clinicians to better monitor their ventilation strategies.


Asunto(s)
Respiración Artificial , Ventiladores Mecánicos , Humanos , Respiración , Unidades de Cuidados Intensivos , Aprendizaje Automático
3.
PLoS One ; 18(8): e0286818, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37535542

RESUMEN

BACKGROUND AND OBJECTIVES: Currently, no evidence-based criteria exist for decision making in the post anesthesia care unit (PACU). This could be valuable for the allocation of postoperative patients to the appropriate level of care and beneficial for patient outcomes such as unanticipated intensive care unit (ICU) admissions. The aim is to assess whether the inclusion of intra- and postoperative factors improves the prediction of postoperative patient deterioration and unanticipated ICU admissions. METHODS: A retrospective observational cohort study was performed between January 2013 and December 2017 in a tertiary Dutch hospital. All patients undergoing surgery in the study period were selected. Cardiothoracic surgeries, obstetric surgeries, catheterization lab procedures, electroconvulsive therapy, day care procedures, intravenous line interventions and patients under the age of 18 years were excluded. The primary outcome was unanticipated ICU admission. RESULTS: An unanticipated ICU admission complicated the recovery of 223 (0.9%) patients. These patients had higher hospital mortality rates (13.9% versus 0.2%, p<0.001). Multivariable analysis resulted in predictors of unanticipated ICU admissions consisting of age, body mass index, general anesthesia in combination with epidural anesthesia, preoperative score, diabetes, administration of vasopressors, erythrocytes, duration of surgery and post anesthesia care unit stay, and vital parameters such as heart rate and oxygen saturation. The receiver operating characteristic curve of this model resulted in an area under the curve of 0.86 (95% CI 0.83-0.88). CONCLUSIONS: The prediction of unanticipated ICU admissions from electronic medical record data improved when the intra- and early postoperative factors were combined with preoperative patient factors. This emphasizes the need for clinical decision support tools in post anesthesia care units with regard to postoperative patient allocation.


Asunto(s)
Hospitalización , Unidades de Cuidados Intensivos , Femenino , Embarazo , Humanos , Adolescente , Estudios Retrospectivos , Factores de Riesgo , Índice de Masa Corporal , Admisión del Paciente
4.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 2161-2164, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31946329

RESUMEN

The objective of this study was to investigate the use of classification methods by a machine-learning approach for discriminating the uterine activity during the four phases of the menstrual cycle. Four different classifiers, including support vector machine (SVM), K-nearest neighbors (KNN), Gaussian mixture model (GMM) and naïve Bayes are here proposed. A set of amplitude- and frequency-features were extracted from signals measured by two different quantitative and noninvasive methods, such as electrohysterography and ultrasound speckle tracking. The proposed classifiers were trained using all possible feature combinations. The method was applied on a database (24 measurements) collected in different phases of the menstrual cycle, comprising uterine active and quiescent phases. The SVM classifier showed the best performance for discrimination between the different menstrual phases. The classification accuracy, sensitivity, and specificity were 90%, 79%, 93%, respectively. Similar methods can in the future contribute to the diagnosis of infertility or other common uterine diseases such as endometriosis.


Asunto(s)
Aprendizaje Automático , Ciclo Menstrual , Útero/fisiología , Algoritmos , Teorema de Bayes , Femenino , Humanos , Distribución Normal , Máquina de Vectores de Soporte
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda