Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 124(3): 032502, 2020 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-32031845

RESUMEN

Radioactive ^{129}Sb, which can be treated as a proton plus semimagic ^{128}Sn core within the particle-core coupling scheme, was studied by Coulomb excitation. Reduced electric quadrupole transition probabilities, B(E2), for the 2^{+}⊗πg_{7/2} multiplet members and candidate πd_{5/2} state were measured. The results indicate that the total electric quadrupole strength of ^{129}Sb is a factor of 1.39(11) larger than the ^{128}Sn core, which is in stark contrast to the expectations of the empirically successful particle-core coupling scheme. Shell-model calculations performed with two different sets of nucleon-nucleon interactions suggest that this enhanced collectivity is due to constructive quadrupole coherence in the wave functions stemming from the proton-neutron residual interactions, where adding one nucleon to a core near a double-shell closure can have a pronounced effect. The enhanced electric quadrupole strength is an early signal of the emerging nuclear collectivity that becomes dominant away from the shell closure.

2.
Phys Rev Lett ; 118(9): 092503, 2017 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-28306272

RESUMEN

Radioactive ^{136}Te has two valence protons and two valence neutrons outside of the ^{132}Sn double shell closure, providing a simple laboratory for exploring the emergence of collectivity and nucleon-nucleon interactions. Coulomb excitation of ^{136}Te on a titanium target was utilized to determine an extensive set of electromagnetic moments for the three lowest-lying states, including B(E2;0_{1}^{+}→2_{1}^{+}), Q(2_{1}^{+}), and g(2_{1}^{+}). The results indicate that the first-excited state, 2_{1}^{+}, composed of the simple 2p⊕2n system, is prolate deformed, and its wave function is dominated by excited valence neutron configurations, but not to the extent previously suggested. It is demonstrated that extreme sensitivity of g(2_{1}^{+}) to the proton and neutron contributions to the wave function provides unique insight into the nature of emerging collectivity, and g(2_{1}^{+}) was used to differentiate among several state-of-the-art theoretical calculations. Our results are best described by the most recent shell model calculations.

3.
Phys Rev Lett ; 85(13): 2693-6, 2000 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-10991210

RESUMEN

A superdeformed rotational band has been identified in 36Ar, linked to known low-spin states, and observed to its high-spin termination at Ipi = 16(+). Cranked Nilsson-Strutinsky and spherical shell model calculations assign the band to a configuration in which four pf-shell orbitals are occupied, leading to a low-spin deformation beta(2) approximately 0.45. Two major shells are active for both protons and neutrons, yet the valence space remains small enough to be confronted with the shell model. This band thus provides an ideal case to study the microscopic structure of collective rotational motion.

4.
Phys Rev Lett ; 61(24): 2818, 1988 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-10039234
13.
Rev Sci Instrum ; 80(8): 083304, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19725648

RESUMEN

The first investigation of the transverse emittance of a hot-cavity laser ion source based on all-solid-state Ti:sapphire lasers is presented. The emittances of (63)Cu ion beams generated by three-photon resonant ionization are measured and compared with that of the (69)Ga and (39)K ion beams resulting from surface ionization in the same ion source. A self-consistent unbiased elliptical exclusion method is adapted for noise reduction and emittance analysis. Typical values of the rms and 90% fractional emittances of the Cu ion beams at 20 keV energy are found to be about 2 and 8 pi mm mrad, respectively, for the ion currents of 2-40 nA investigated. The emittances of the laser-produced Cu ion beams are smaller than those of the surface-ionized Ga and K ion beams.

14.
Phys Rev Lett ; 94(19): 192501, 2005 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-16090167

RESUMEN

Following Coulomb excitation of the radioactive ion beam (RIB) 132Te at HRIBF we report the first use of the recoil-in-vacuum (RIV) method to determine the g factor of the 2(+)(1) state: g(973.9 keV 2(+) 132Te) = (+)0.35(5). The advantages offered by the RIV method in the context of RIBs and modern detector arrays are discussed.

15.
Phys Rev Lett ; 94(12): 122501, 2005 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15903911

RESUMEN

The B(E2;0(+)(1)-->2(+)(1)) values for the radioactive neutron-rich germanium isotopes (78,80)Ge and the closed neutron shell nucleus 82Ge were measured at the HRIBF using Coulomb excitation in inverse kinematics. These data allow a study of the systematic trend between the subshell closures at N=40 and 50. The B(E2) behavior approaching N=50 is similar to the trend observed for heavier isotopic chains. A comparison of the experimental results with a shell model calculation demonstrates persistence of the N=50 shell gap and a strong sensitivity of the B(E2) values to the effective interaction.

16.
Phys Rev Lett ; 86(8): 1450-3, 2001 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-11290165

RESUMEN

Two excited well-deformed bands have been observed in the semi-magic nucleus (58)Ni. One of the bands was observed to partially decay by emission of a prompt discrete alpha particle that feeds the 2949 keV 6(+) spherical yrast state in the daughter nucleus (54)Fe. This constitutes the first observation of prompt alpha emission from states lying in the deformed secondary minimum of the nuclear potential. gamma-ray linking transitions via several parallel paths establish the spin, parity, and excitation energy of this deformed band in (58)Ni.

17.
Phys Rev Lett ; 88(22): 222501, 2002 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-12059416

RESUMEN

The B(E2;0(+)-->2+) values for the first 2+ excited states of neutron-rich 132,134,136Te have been measured using Coulomb excitation of radioactive ion beams. The B(E2) values obtained for 132,134Te are in excellent agreement with expectations based on the systematics of heavy stable Te isotopes, while that for 136Te is unexpectedly small. These results are discussed in terms of proton-neutron configuration mixing and shell-model calculations using realistic effective interactions.

18.
Phys Rev Lett ; 87(22): 222501, 2001 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-11736396

RESUMEN

A rotational band with seven gamma-ray transitions between states with spin 2 Planck's constant and 16 Planck's constant has been observed in the doubly magic, self-conjugate nucleus (40)(20)Ca(20). The measured transition quadrupole moment of 1.80(+0.39)(-0.29)eb indicates a superdeformed shape with a deformation beta(2) = 0.59(+0.11)(-0.07). The features of this band are explained by cranked relativistic mean field calculations to arise from an 8-particle 8-hole excitation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda