Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
PLoS Biol ; 15(9): e2003769, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28892507

RESUMEN

Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than ß-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.


Asunto(s)
Blastocystis/genética , Genoma de Protozoos , Blastocystis/metabolismo , Metabolismo de los Hidratos de Carbono , Codón de Terminación , Microbioma Gastrointestinal , Humanos , Intrones , Especificidad de la Especie
2.
J Biol Chem ; 292(13): 5465-5475, 2017 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-28193843

RESUMEN

Branching enzyme (BE) catalyzes the formation of α-1,6-glucosidic linkages in amylopectin and glycogen. The reaction products are variable, depending on the organism sources, and the mechanistic basis for these different outcomes is unclear. Although most cyanobacteria have only one BE isoform belonging to glycoside hydrolase family 13, Cyanothece sp. ATCC 51142 has three isoforms (BE1, BE2, and BE3) with distinct enzymatic properties, suggesting that investigations of these enzymes might provide unique insights into this system. Here, we report the crystal structure of ligand-free wild-type BE1 (residues 5-759 of 1-773) at 1.85 Å resolution. The enzyme consists of four domains, including domain N, carbohydrate-binding module family 48 (CBM48), domain A containing the catalytic site, and domain C. The central domain A displays a (ß/α)8-barrel fold, whereas the other domains adopt ß-sandwich folds. Domain N was found in a new location at the back of the protein, forming hydrogen bonds and hydrophobic interactions with CBM48 and domain A. Site-directed mutational analysis identified a mutant (W610N) that bound maltoheptaose with sufficient affinity to enable structure determination at 2.30 Å resolution. In this structure, maltoheptaose was bound in the active site cleft, allowing us to assign subsites -7 to -1. Moreover, seven oligosaccharide-binding sites were identified on the protein surface, and we postulated that two of these in domain A served as the entrance and exit of the donor/acceptor glucan chains, respectively. Based on these structures, we propose a substrate binding model explaining the mechanism of glycosylation/deglycosylation reactions catalyzed by BE.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano/química , Cyanothece/química , Modelos Moleculares , Dominios Proteicos , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Proteínas Bacterianas/química , Dominio Catalítico , Cristalización , Cianobacterias , Glucanos/metabolismo , Glicosilación , Mutagénesis Sitio-Dirigida , Unión Proteica , Conformación Proteica , Especificidad por Sustrato
3.
Nature ; 492(7427): 59-65, 2012 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-23201678

RESUMEN

Cryptophyte and chlorarachniophyte algae are transitional forms in the widespread secondary endosymbiotic acquisition of photosynthesis by engulfment of eukaryotic algae. Unlike most secondary plastid-bearing algae, miniaturized versions of the endosymbiont nuclei (nucleomorphs) persist in cryptophytes and chlorarachniophytes. To determine why, and to address other fundamental questions about eukaryote-eukaryote endosymbiosis, we sequenced the nuclear genomes of the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans. Both genomes have >21,000 protein genes and are intron rich, and B. natans exhibits unprecedented alternative splicing for a single-celled organism. Phylogenomic analyses and subcellular targeting predictions reveal extensive genetic and biochemical mosaicism, with both host- and endosymbiont-derived genes servicing the mitochondrion, the host cell cytosol, the plastid and the remnant endosymbiont cytosol of both algae. Mitochondrion-to-nucleus gene transfer still occurs in both organisms but plastid-to-nucleus and nucleomorph-to-nucleus transfers do not, which explains why a small residue of essential genes remains locked in each nucleomorph.


Asunto(s)
Núcleo Celular/genética , Cercozoos/genética , Criptófitas/genética , Evolución Molecular , Genoma/genética , Mosaicismo , Simbiosis/genética , Proteínas Algáceas/genética , Proteínas Algáceas/metabolismo , Empalme Alternativo/genética , Cercozoos/citología , Cercozoos/metabolismo , Criptófitas/citología , Criptófitas/metabolismo , Citosol/metabolismo , Duplicación de Gen/genética , Transferencia de Gen Horizontal/genética , Genes Esenciales/genética , Genoma Mitocondrial/genética , Genoma de Planta/genética , Genoma de Plastidios/genética , Datos de Secuencia Molecular , Filogenia , Transporte de Proteínas , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética
4.
New Phytol ; 216(3): 670-681, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28857164

RESUMEN

Contents 670 I. 671 II. 671 III. 676 IV. 678 678 References 678 SUMMARY: Biotic interactions underlie life's diversity and are the lynchpin to understanding its complexity and resilience within an ecological niche. Algal biologists have embraced this paradigm, and studies building on the explosive growth in omics and cell biology methods have facilitated the in-depth analysis of nonmodel organisms and communities from a variety of ecosystems. In turn, these advances have enabled a major revision of our understanding of the origin and evolution of photosynthesis in eukaryotes, bacterial-algal interactions, control of massive algal blooms in the ocean, and the maintenance and degradation of coral reefs. Here, we review some of the most exciting developments in the field of algal biotic interactions and identify challenges for scientists in the coming years. We foresee the development of an algal knowledgebase that integrates ecosystem-wide omics data and the development of molecular tools/resources to perform functional analyses of individuals in isolation and in populations. These assets will allow us to move beyond mechanistic studies of a single species towards understanding the interactions amongst algae and other organisms in both the laboratory and the field.


Asunto(s)
Antozoos/fisiología , Evolución Biológica , Phaeophyceae/fisiología , Animales , Cromatóforos , Dinoflagelados/fisiología , Eutrofización , Interacciones Huésped-Patógeno , Fotosíntesis , Phycodnaviridae/patogenicidad , Filogenia , Plastidios , Simbiosis
5.
Plant Physiol ; 171(3): 1879-92, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27208262

RESUMEN

At variance with the starch-accumulating plants and most of the glycogen-accumulating cyanobacteria, Cyanobacterium sp. CLg1 synthesizes both glycogen and starch. We now report the selection of a starchless mutant of this cyanobacterium that retains wild-type amounts of glycogen. Unlike other mutants of this type found in plants and cyanobacteria, this mutant proved to be selectively defective for one of the two types of glycogen/starch synthase: GlgA2. This enzyme is phylogenetically related to the previously reported SSIII/SSIV starch synthase that is thought to be involved in starch granule seeding in plants. This suggests that, in addition to the selective polysaccharide debranching demonstrated to be responsible for starch rather than glycogen synthesis, the nature and properties of the elongation enzyme define a novel determinant of starch versus glycogen accumulation. We show that the phylogenies of GlgA2 and of 16S ribosomal RNA display significant congruence. This suggests that this enzyme evolved together with cyanobacteria when they diversified over 2 billion years ago. However, cyanobacteria can be ruled out as direct progenitors of the SSIII/SSIV ancestral gene found in Archaeplastida. Hence, both cyanobacteria and plants recruited similar enzymes independently to perform analogous tasks, further emphasizing the importance of convergent evolution in the appearance of starch from a preexisting glycogen metabolism network.


Asunto(s)
Proteínas Bacterianas/metabolismo , Evolución Biológica , Cianobacterias/metabolismo , Glucógeno/metabolismo , Almidón Sintasa/metabolismo , Proteínas Bacterianas/genética , Cianobacterias/fisiología , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Glucógeno/química , Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Mutación , Filogenia , Polisacáridos Bacterianos/genética , Polisacáridos Bacterianos/metabolismo , Almidón/metabolismo , Almidón Sintasa/genética , Synechocystis/genética , Synechocystis/metabolismo
6.
Biochim Biophys Acta ; 1847(6-7): 495-504, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25687892

RESUMEN

Plastid endosymbiosis defines a process through which a fully evolved cyanobacterial ancestor has transmitted to a eukaryotic phagotroph the hundreds of genes required to perform oxygenic photosynthesis, together with the membrane structures, and cellular compartment associated with this process. In this review, we will summarize the evidence pointing to an active role of Chlamydiales in metabolic integration of free living cyanobacteria, within the cytosol of the last common plant ancestor.


Asunto(s)
Chlamydiales/fisiología , Plantas/microbiología , Plastidios/microbiología , Simbiosis , Evolución Biológica , Interacciones Huésped-Patógeno
7.
Plant Cell ; 25(1): 7-21, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23371946

RESUMEN

Under the endosymbiont hypothesis, over a billion years ago a heterotrophic eukaryote entered into a symbiotic relationship with a cyanobacterium (the cyanobiont). This partnership culminated in the plastid that has spread to forms as diverse as plants and diatoms. However, why primary plastid acquisition has not been repeated multiple times remains unclear. Here, we report a possible answer to this question by showing that primary plastid endosymbiosis was likely to have been primed by the secretion in the host cytosol of effector proteins from intracellular Chlamydiales pathogens. We provide evidence suggesting that the cyanobiont might have rescued its afflicted host by feeding photosynthetic carbon into a chlamydia-controlled assimilation pathway.


Asunto(s)
Proteínas Bacterianas/metabolismo , Chlamydiales/fisiología , Cianobacterias/fisiología , Plantas/microbiología , Plastidios/genética , Simbiosis , Proteínas Bacterianas/genética , Evolución Biológica , Carbono/metabolismo , Chlamydiales/enzimología , Chlamydiales/genética , Biología Computacional , Cianobacterias/genética , Genoma de Planta/genética , Glucógeno/metabolismo , Interacciones Huésped-Patógeno , Isoamilasa/genética , Isoamilasa/metabolismo , Fotosíntesis , Filogenia , Proteínas de Plantas/genética , Plantas/genética , Plastidios/enzimología
8.
Plant Cell ; 25(10): 3961-75, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24163312

RESUMEN

Starch, unlike hydrosoluble glycogen particles, aggregates into insoluble, semicrystalline granules. In photosynthetic eukaryotes, the transition to starch accumulation occurred after plastid endosymbiosis from a preexisting cytosolic host glycogen metabolism network. This involved the recruitment of a debranching enzyme of chlamydial pathogen origin. The latter is thought to be responsible for removing misplaced branches that would otherwise yield a water-soluble polysaccharide. We now report the implication of starch debranching enzyme in the aggregation of semicrystalline granules of single-cell cyanobacteria that accumulate both glycogen and starch-like polymers. We show that an enzyme of analogous nature to the plant debranching enzyme but of a different bacterial origin was recruited for the same purpose in these organisms. Remarkably, both the plant and cyanobacterial enzymes have evolved through convergent evolution, showing novel yet identical substrate specificities from a preexisting enzyme that originally displayed the much narrower substrate preferences required for glycogen catabolism.


Asunto(s)
Evolución Biológica , Cianobacterias/enzimología , Sistema de la Enzima Desramificadora del Glucógeno/genética , Glucógeno/metabolismo , Oryza/enzimología , Almidón/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Cianobacterias/genética , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Mutagénesis , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Proc Natl Acad Sci U S A ; 110(13): 5247-52, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23503846

RESUMEN

Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an unusual structure characterized by gene-dense regions surrounded by repeat-rich regions dominated by transposable elements. Despite its fairly large size, this genome shows features typical of compact genomes, e.g., on average only 0.3 introns per gene, short introns, low median distance between genes, small gene families, and no indication of large-scale genome duplication. The genome also gives insights into the metabolism of marine red algae and adaptations to the marine environment, including genes related to halogen metabolism, oxylipins, and multicellularity (microRNA processing and transcription factors). Particularly interesting are features related to carbohydrate metabolism, which include a minimalistic gene set for starch biosynthesis, the presence of cellulose synthases acquired before the primary endosymbiosis showing the polyphyly of cellulose synthesis in Archaeplastida, and cellulases absent in terrestrial plants as well as the occurrence of a mannosylglycerate synthase potentially originating from a marine bacterium. To explain the observations on genome structure and gene content, we propose an evolutionary scenario involving an ancestral red alga that was driven by early ecological forces to lose genes, introns, and intergenetic DNA; this loss was followed by an expansion of genome size as a consequence of activity of transposable elements.


Asunto(s)
Chondrus/genética , Evolución Molecular , Genes de Plantas , Secuencia de Bases , MicroARNs/genética , Datos de Secuencia Molecular , Proteínas de Plantas/genética , ARN de Planta/genética
10.
J Biol Chem ; 289(33): 22991-23003, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24993830

RESUMEN

The starch debranching enzymes isoamylase 1 and 2 (ISA1 and ISA2) are known to exist in a large complex and are involved in the biosynthesis and crystallization of starch. It is suggested that the function of the complex is to remove misplaced branches of growing amylopectin molecules, which would otherwise prevent the association and crystallization of adjacent linear chains. Here, we investigate the function of ISA1 and ISA2 from starch producing alga Chlamydomonas. Through complementation studies, we confirm that the STA8 locus encodes for ISA2 and sta8 mutants lack the ISA1·ISA2 heteromeric complex. However, mutants retain a functional dimeric ISA1 that is able to partly sustain starch synthesis in vivo. To better characterize ISA1, we have overexpressed and purified ISA1 from Chlamydomonas reinhardtii (CrISA1) and solved the crystal structure to 2.3 Å and in complex with maltoheptaose to 2.4 Å. Analysis of the homodimeric CrISA1 structure reveals a unique elongated structure with monomers connected end-to-end. The crystal complex reveals details about the mechanism of branch binding that explains the low activity of CrISA1 toward tightly spaced branches and reveals the presence of additional secondary surface carbohydrate binding sites.


Asunto(s)
Chlamydomonas reinhardtii/enzimología , Glucanos/química , Isoamilasa/química , Proteínas de Plantas/química , Cristalografía por Rayos X , Estructura Terciaria de Proteína
11.
BMC Evol Biol ; 14: 103, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24884572

RESUMEN

BACKGROUND: Starch is the main source of carbon storage in the Archaeplastida. The starch biosynthesis pathway (sbp) emerged from cytosolic glycogen metabolism shortly after plastid endosymbiosis and was redirected to the plastid stroma during the green lineage divergence. The SBP is a complex network of genes, most of which are members of large multigene families. While some gene duplications occurred in the Archaeplastida ancestor, most were generated during the sbp redirection process, and the remaining few paralogs were generated through compartmentalization or tissue specialization during the evolution of the land plants. In the present study, we tested models of duplicated gene evolution in order to understand the evolutionary forces that have led to the development of SBP in angiosperms. We combined phylogenetic analyses and tests on the rates of evolution along branches emerging from major duplication events in six gene families encoding sbp enzymes. RESULTS: We found evidence of positive selection along branches following cytosolic or plastidial specialization in two starch phosphorylases and identified numerous residues that exhibited changes in volume, polarity or charge. Starch synthases, branching and debranching enzymes functional specializations were also accompanied by accelerated evolution. However, none of the sites targeted by selection corresponded to known functional domains, catalytic or regulatory. Interestingly, among the 13 duplications tested, 7 exhibited evidence of positive selection in both branches emerging from the duplication, 2 in only one branch, and 4 in none of the branches. CONCLUSIONS: The majority of duplications were followed by accelerated evolution targeting specific residues along both branches. This pattern was consistent with the optimization of the two sub-functions originally fulfilled by the ancestral gene before duplication. Our results thereby provide strong support to the so-called "Escape from Adaptive Conflict" (EAC) model. Because none of the residues targeted by selection occurred in characterized functional domains, we propose that enzyme specialization has occurred through subtle changes in affinity, activity or interaction with other enzymes in complex formation, while the basic function defined by the catalytic domain has been maintained.


Asunto(s)
Vías Biosintéticas , Evolución Molecular , Genes Duplicados , Magnoliopsida/enzimología , Magnoliopsida/genética , Almidón/biosíntesis , Secuencia de Aminoácidos , Evolución Biológica , Citosol/enzimología , Magnoliopsida/citología , Datos de Secuencia Molecular , Filogenia , Plastidios/enzimología , Plastidios/genética , Alineación de Secuencia
12.
Arch Biochem Biophys ; 562: 9-21, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25107532

RESUMEN

To investigate the functional properties of 10 α-glucan branching enzymes (BEs) from various sources, we determined the chain-length distribution of BE enzymatic products and their phosphorylase-limit dextrins (Φ-LD). All BEs could be classified into either of the three rice BE isozymes: OsBEI, OsBEIIa, or OsBEIIb. Escherichia coli BE (EcoBE) had the same enzymatic properties as OsBEI, while Synechococcus elongatus BE (ScoBE) and Chlorella kessleri BE (ChlBE) had BEIIb-type properties. Human BE (HosBE), yeast BE (SacBE), and two Porphyridium purpureum BEs (PopBE1 and PopBE2) exhibited the OsBEIIa-type properties. Analysis of chain-length profile of Φ-LD of the BE reaction products revealed that EcoBE, ScoBE, PopBE1, and PopBE2 preferred A-chains as acceptors, while OsBEIIb used B-chains more frequently than A-chains. Both EcoBE and ScoBE specifically formed the branch linkages at the third glucose residue from the reducing end of the acceptor chain. The present results provide evidence for the first time that great variation exists as to the preference of BEs for their acceptor chain, either A-chain or B-chain. In addition, EcoBE and ScoBE recognize the location of branching points in their acceptor chain during their branching reaction. Nevertheless, no correlation exists between the primary structure of BE proteins and their enzymatic characteristics.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano/química , Glucanos/química , Amilopectina/química , Chlorella/enzimología , Dextrinas/química , Escherichia coli/enzimología , Hongos/enzimología , Glucógeno/química , Humanos , Isoenzimas/química , Oryza/enzimología , Fosforilasas/química , Filogenia , Porphyridium/enzimología , Proteínas Recombinantes/química , Especificidad de la Especie , Almidón/química , Synechococcus/enzimología
13.
Plant Cell Physiol ; 54(4): 465-73, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23299410

RESUMEN

Unicellular, diazotrophic species of cyanobacteria, Cyanobacterium sp. NBRC 102756, Cyanothece sp. ATCC 51142 and Cyanobacterium sp. CLg1, accumulate insoluble α-glucan inside the cells as the storage polysaccharide. The purified polysaccharides showed granular morphology, with a diameter of 0.2-0.7 µm. The three α-glucan preparations all showed A-type allomorph in X-ray diffraction analysis. Distinct thermal gelatinization temperatures were observed for these polysaccharides. The α-glucans from NBRC 102756 and ATCC 51142 strains consisted solely of branched α-glucans, or semi-amylopectin, while CLg1 contained semi-amylopectin as the primary component as well as linear or scarcely branched glucan (amylose). Separation of the debranched glucan chains by gel filtration chromatography explicitly showed the presence in the semi-amylopectin molecule of long chains corresponding to B2 chains, which connect clusters in amylopectin of plants. The relative proportions of short and long glucan chains in the branched polysaccharides differed depending on the species, and the variation was intimately correlated with the physical properties of the α-glucans. The results suggested that semi-amylopectin of the three cyanobacteria exhibit essentially similar organization with a tandem cluster structure. The polysaccharides of these strains are therefore referred to as 'cyanobacterial starch', distinct from glycogen.


Asunto(s)
Cianobacterias/metabolismo , Glucanos/química , Glucanos/metabolismo , Almidón/química , Almidón/metabolismo , Glucanos/ultraestructura , Datos de Secuencia Molecular , Almidón/ultraestructura , Difracción de Rayos X
14.
Front Bioeng Biotechnol ; 11: 1259587, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37790259

RESUMEN

Haptophytes synthesize unique ß-glucans containing more ß-1,6-linkages than ß-1,3 linkages, as a storage polysaccharide. To understand the mechanism of the synthesis, we investigated the roles of Kre6 (yeast 1,6-ß-transglycosylase) homologs, PhTGS, in the haptophyte Pleurochrysis haptonemofera. RNAi of PhTGS repressed ß-glucan accumulation and simultaneously induced lipid production, suggesting that PhTGS is involved in ß-glucan synthesis and that the knockdown leads to the alteration of the carbon metabolic flow. PhTGS was expressed more in light, where ß-glucan was actively produced by photosynthesis, than in the dark. The crude extract of E. coli expressing PhKre6 demonstrated its activity to incorporate 14C-UDP-glucose into ß-glucan of P. haptonemofera. These findings suggest that PhTGS functions in storage ß-glucan synthesis specifically in light, probably by producing the ß-1,6-branch.

15.
Proc Natl Acad Sci U S A ; 106(50): 21126-30, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19940244

RESUMEN

Starch defines an insoluble semicrystalline form of storage polysaccharides restricted to Archaeplastida (red and green algae, land plants, and glaucophytes) and some secondary endosymbiosis derivatives of the latter. While green algae and land-plants store starch in plastids by using an ADP-glucose-based pathway related to that of cyanobacteria, red algae, glaucophytes, cryptophytes, dinoflagellates, and apicomplexa parasites store a similar type of polysaccharide named floridean starch in their cytosol or periplast. These organisms are suspected to store their floridean starch from UDP-glucose in a fashion similar to heterotrophic eukaryotes. However, experimental proof of this suspicion has never been produced. Dinoflagellates define an important group of both photoautotrophic and heterotrophic protists. We now report the selection and characterization of a low starch mutant of the heterotrophic dinoflagellate Crypthecodinium cohnii. We show that the sta1-1 mutation of C. cohnii leads to a modification of the UDP-glucose-specific soluble starch synthase activity that correlates with a decrease in starch content and an alteration of amylopectin structure. These experimental results validate the UDP-glucose-based pathway proposed for floridean starch synthesis.


Asunto(s)
Dinoflagelados/metabolismo , Mutación , Almidón/biosíntesis , Citosol/metabolismo , Dinoflagelados/genética , Almidón Sintasa , Uridina Difosfato Glucosa/metabolismo
16.
Front Plant Sci ; 13: 967165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36051298

RESUMEN

Most rhodophytes synthesize semi-amylopectin as a storage polysaccharide, whereas some species in the most primitive class (Cyanidiophyceae) make glycogen. To know the roles of isoamylases in semi-amylopectin synthesis, we investigated the effects of isoamylase gene (CMI294C and CMS197C)-deficiencies on semi-amylopectin molecular structure and starch granule morphology in Cyanidioschyzon merolae (Cyanidiophyceae). Semi-amylopectin content in a CMS197C-disruption mutant (ΔCMS197C) was not significantly different from that in the control strain, while that in a CMI294C-disruption mutant (ΔCMI294C) was much lower than those in the control strain, suggesting that CMI294C is essential for semi-amylopectin synthesis. Scanning electron microscopy showed that the ΔCMI294C strain contained smaller starch granules, while the ΔCMS197C strain had normal size, but donut-shaped granules, unlike those of the control strain. Although the chain length distribution of starch from the control strain displayed a semi-amylopectin pattern with a peak around degree of polymerization (DP) 11-13, differences in chain length profiles revealed that the ΔCMS197C strain has more short chains (DP of 3 and 4) than the control strain, while the ΔCMI294C strain has more long chains (DP ≥12). These findings suggest that CMI294C-type isoamylase, which can debranch a wide range of chains, probably plays an important role in semi-amylopectin synthesis unique in the Rhodophyta.

17.
Mol Biol Evol ; 27(12): 2691-701, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20576760

RESUMEN

The acquisition of photosynthesis by eukaryotic cells through enslavement of a cyanobacterium represents one of the most remarkable turning points in the history of life on Earth. In addition to endosymbiotic gene transfer, the acquisition of a protein import apparatus and the coordination of gene expression between host and endosymbiont genomes, the establishment of a metabolic connection was crucial for a functional endosymbiosis. It was previously hypothesized that the first metabolic connection between both partners of endosymbiosis was achieved through insertion of a host-derived metabolite transporter into the cyanobacterial plasma membrane. Reconstruction of starch metabolism in the common ancestor of photosynthetic eukaryotes suggested that adenosine diphosphoglucose (ADP-Glc), a bacterial-specific metabolite, was likely to be the photosynthate, which was exported from the early cyanobiont. However, extant plastid transporters that have evolved from host-derived endomembrane transporters do not transport ADP-Glc but simple phosphorylated sugars in exchange for orthophosphate. We now show that those eukaryotic nucleotide sugar transporters, which define the closest relatives to the common ancestor of extant plastid envelope carbon translocators, possess an innate ability for transporting ADP-Glc. Such an unexpected ability would have been required to establish plastid endosymbiosis.


Asunto(s)
Proteínas de Transporte de Nucleótidos/genética , Fotosíntesis/genética , Filogenia , Plastidios/metabolismo , Simbiosis , Adenosina Difosfato Glucosa/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cianobacterias/genética , Cianobacterias/metabolismo , Proteínas de Transporte de Nucleótidos/metabolismo , Plastidios/genética , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Almidón/metabolismo
18.
Plant Physiol ; 153(3): 956-69, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20448101

RESUMEN

Functions of isoamylase-type starch-debranching enzyme (ISA) proteins and complexes in maize (Zea mays) endosperm were characterized. Wild-type endosperm contained three high molecular mass ISA complexes resolved by gel permeation chromatography and native-polyacrylamide gel electrophoresis. Two complexes of approximately 400 kD contained both ISA1 and ISA2, and an approximately 300-kD complex contained ISA1 but not ISA2. Novel mutations of sugary1 (su1) and isa2, coding for ISA1 and ISA2, respectively, were used to develop one maize line with ISA1 homomer but lacking heteromeric ISA and a second line with one form of ISA1/ISA2 heteromer but no homomeric enzyme. The mutations were su1-P, which caused an amino acid substitution in ISA1, and isa2-339, which was caused by transposon insertion and conditioned loss of ISA2. In agreement with the protein compositions, all three ISA complexes were missing in an ISA1-null line, whereas only the two higher molecular mass forms were absent in the ISA2-null line. Both su1-P and isa2-339 conditioned near-normal starch characteristics, in contrast to ISA-null lines, indicating that either homomeric or heteromeric ISA is competent for starch biosynthesis. The homomer-only line had smaller, more numerous granules. Thus, a function of heteromeric ISA not compensated for by homomeric enzyme affects granule initiation or growth, which may explain evolutionary selection for ISA2. ISA1 was required for the accumulation of ISA2, which is regulated posttranscriptionally. Quantitative polymerase chain reaction showed that the ISA1 transcript level was elevated in tissues where starch is synthesized and low during starch degradation, whereas ISA2 transcript was relatively abundant during periods of either starch biosynthesis or catabolism.


Asunto(s)
Endospermo/enzimología , Endospermo/crecimiento & desarrollo , Glicósido Hidrolasas/metabolismo , Isoamilasa/metabolismo , Proteínas de Plantas/metabolismo , Multimerización de Proteína , Zea mays/enzimología , Zea mays/crecimiento & desarrollo , Metabolismo de los Hidratos de Carbono , Cromatografía en Gel , Endospermo/genética , Endospermo/ultraestructura , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Germinación/genética , Glicósido Hidrolasas/genética , Isoamilasa/genética , Datos de Secuencia Molecular , Mutación/genética , Extractos Vegetales , Proteínas de Plantas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Almidón/química , Almidón/metabolismo , Almidón/ultraestructura , Zea mays/genética
19.
J Exp Bot ; 62(6): 1775-801, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21220783

RESUMEN

Solid semi-crystalline starch and hydrosoluble glycogen define two distinct physical states of the same type of storage polysaccharide. Appearance of semi-crystalline storage polysaccharides appears linked to the requirement of unicellular diazotrophic cyanobacteria to fuel nitrogenase and protect it from oxygen through respiration of vast amounts of stored carbon. Starch metabolism itself resulted from the merging of the bacterial and eukaryote pathways of storage polysaccharide metabolism after endosymbiosis of the plastid. This generated the three Archaeplastida lineages: the green algae and land plants (Chloroplastida), the red algae (Rhodophyceae), and the glaucophytes (Glaucophyta). Reconstruction of starch metabolism in the common ancestor of Archaeplastida suggests that polysaccharide synthesis was ancestrally cytosolic. In addition, the synthesis of cytosolic starch from the ADP-glucose exported from the cyanobacterial symbiont possibly defined the original metabolic flux by which the cyanobiont provided photosynthate to its host. Additional evidence supporting this scenario include the monophyletic origin of the major carbon translocators of the inner membrane of eukaryote plastids which are sisters to nucleotide-sugar transporters of the eukaryote endomembrane system. It also includes the extent of enzyme subfunctionalization that came as a consequence of the rewiring of this pathway to the chloroplasts in the green algae. Recent evidence suggests that, at the time of endosymbiosis, obligate intracellular energy parasites related to extant Chlamydia have donated important genes to the ancestral starch metabolism network.


Asunto(s)
Evolución Molecular , Glucógeno/metabolismo , Plantas/metabolismo , Plastidios/fisiología , Almidón/metabolismo , Simbiosis , Carbono/metabolismo , Cloroplastos/metabolismo , Duplicación de Gen , Fotosíntesis , Plantas/genética
20.
Front Plant Sci ; 12: 629045, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33747010

RESUMEN

Eukaryotes most often synthesize storage polysaccharides in the cytosol or vacuoles in the form of either alpha (glycogen/starch)- or beta-glucosidic (chrysolaminarins and paramylon) linked glucan polymers. In both cases, the glucose can be packed either in water-soluble (glycogen and chrysolaminarins) or solid crystalline (starch and paramylon) forms with different impacts, respectively, on the osmotic pressure, the glucose accessibility, and the amounts stored. Glycogen or starch accumulation appears universal in all free-living unikonts (metazoa, fungi, amoebozoa, etc.), as well as Archaeplastida and alveolata, while other lineages offer a more complex picture featuring both alpha- and beta-glucan accumulators. We now infer the distribution of these polymers in stramenopiles through the bioinformatic detection of their suspected metabolic pathways. Detailed phylogenetic analysis of key enzymes of these pathways correlated to the phylogeny of Stramenopila enables us to retrace the evolution of storage polysaccharide metabolism in this diverse group of organisms. The possible ancestral nature of glycogen metabolism in eukaryotes and the underlying source of its replacement by beta-glucans are discussed.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda