Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 382(2272): 20230226, 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38679051

RESUMEN

Parametric coupling of waves is one of the most efficient mechanisms of energy transfer that can lead to the growth or decay of waves. This transfer occurs at frequencies close to their natural frequencies. In partially ionized solar plasma, there are a multitude of waves that can undergo this process. Here, we study the parametric coupling of Alfvén waves propagating in a partially ionized solar plasma with ionization-recombination waves identified by our study to appear in a plasma in ionization non-equilibrium. Depending on the parameters that describe the plasma (density, temperature), coupling can lead to a parametric resonance. Our study determines the occurrence conditions of parametric resonance, by finding the boundaries between stable and unstable regions in the parameter space. Our results show that collisions and non-equilibrium recombination can both contribute to the onset of unstable behaviour of parametrically resonant Alfvén waves. This article is part of the theme issue 'Partially ionized plasma of the solar atmosphere: recent advances and future pathways'.

2.
Philos Trans A Math Phys Eng Sci ; 379(2190): 20200181, 2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33342375

RESUMEN

High-resolution solar observations show the complex structure of the magnetohydrodynamic (MHD) wave motion. We apply the techniques of proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) to identify the dominant MHD wave modes in a sunspot using the intensity time series. The POD technique was used to find modes that are spatially orthogonal, whereas the DMD technique identifies temporal orthogonality. Here, we show that the combined POD and DMD approaches can successfully identify both sausage and kink modes in a sunspot umbra with an approximately circular cross-sectional shape. This article is part of the Theo Murphy meeting issue 'High-resolution wave dynamics in the lower solar atmosphere'.

3.
Sol Phys ; 293(10): 139, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30956361

RESUMEN

We investigate the characteristics of magneto-acoustic surface waves propagating at a single density interface, in the presence of an inclined magnetic field. For linear wave propagation, the dispersion relation is obtained and analytical solutions are derived for small inclination angle. The inclination of the field renders the frequency of the waves complex, where the imaginary part describes wave attenuation, due to lateral energy leakage.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda