Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Peripher Nerv Syst ; 29(1): 47-57, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38009865

RESUMEN

BACKGROUND AND AIMS: Chemotherapy-induced peripheral neurotoxicity (CIPN) is a common and long-lasting adverse event of several anticancer compounds, for which treatment has not yet been developed. To fill this gap, preclinical studies are warranted, exploiting highly translational outcome measure(s) to transfer data from bench to bedside. Nerve excitability testing (NET) enables to test in vivo axonal properties and can be used to monitor early changes leading to axonal damage. METHODS: We tested NET use in two different CIPN rat models: oxaliplatin (OHP) and paclitaxel (PTX). Animals (female) were chronically treated with either PTX or OHP and compared to respective control animals. NET was performed as soon as the first injection was administered. At the end of the treatment, CIPN onset was verified via a multimodal and robust approach: nerve conduction studies, nerve morphometry, behavioural tests and intraepidermal nerve fibre density. RESULTS: NET showed the typical pattern of axonal hyperexcitability in the 72 h following the first OHP administration, whereas it showed precocious signs of axonal damage in PTX animals. At the end of the month of treatment, OHP animals showed a pattern compatible with a mild axonal sensory polyneuropathy. Instead, PTX cohort was characterised by a rather severe sensory axonal polyneuropathy with minor signs of motor involvement. INTERPRETATION: NET after the first administration demonstrated the ongoing OHP-related channelopathy, whereas in PTX cohort it showed precocious signs of axonal damage. Therefore, NET could be suggested as an early surrogate marker in clinical trials, to detect precocious changes leading to axonal damage.


Asunto(s)
Antineoplásicos , Síndromes de Neurotoxicidad , Enfermedades del Sistema Nervioso Periférico , Polineuropatías , Humanos , Femenino , Ratas , Animales , Antineoplásicos/toxicidad , Oxaliplatino/toxicidad , Axones , Paclitaxel/toxicidad , Síndromes de Neurotoxicidad/diagnóstico
2.
Int J Mol Sci ; 24(2)2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36675203

RESUMEN

Peripheral Neuropathies (PN) are common conditions whose treatment is still lacking in most cases. Animal models are crucial, but experimental procedures should be refined in some cases. We performed a detailed characterization of the ventral caudal nerve to contribute to a more effective assessment of axonal damage in future PN studies. PN was induced via weekly systemic injection of a neurotoxic drug (paclitaxel); we compared the control and PN-affected rats, performing serial neurophysiological evaluations of the caudal nerve for its entire length. On the same nerve portions, we performed light microscopy and ultrastructural pathological observations to assess the severity of damage and verify the integrity of the surrounding structures. Neurophysiological and morphological analyses confirmed that a severe axonopathy had ensued in the PN group, with a length-dependent modality, matching morphological observations. The site of neurophysiological recording (e.g., distance from the base of the tail) was critical for achieving useful data. A flexible experimental paradigm should be considered in animal studies investigating axonal PN, particularly if the expected severity is relevant; the mid-portion of the tail might be the most appropriate site: there damage might be remarkable but neither as extreme as at the tip of the tail nor as mild as at the base of the tail.


Asunto(s)
Tejido Nervioso , Síndromes de Neurotoxicidad , Enfermedades del Sistema Nervioso Periférico , Ratas , Animales , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Tejido Nervioso/patología , Paclitaxel/efectos adversos , Axones/patología , Síndromes de Neurotoxicidad/patología
3.
Int J Mol Sci ; 23(10)2022 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-35628600

RESUMEN

Mesenchymal Stem Cells (MSCs) are adult multipotent cells able to increase sensory neuron survival: direct co-culture of MSCs with neurons is pivotal to observe a neuronal survival increase. Despite the identification of some mechanisms of action, little is known about how MSCs physically interact with neurons. The aim of this paper was to investigate and characterize the main mechanisms of interaction between MSCs and neurons. Morphological analysis showed the presence of gap junctions and tunneling nanotubes between MSCs and neurons only in direct co-cultures. Using a diffusible dye, we observed a flow from MSCs to neurons and further analysis demonstrated that MSCs donated mitochondria to neurons. Treatment of co-cultures with the gap junction blocker Carbenoxolone decreased neuronal survival, thus demonstrating the importance of gap junctions and, more in general, of cell communication for the MSC positive effect. We also investigated the role of extracellular vesicles; administration of direct co-cultures-derived vesicles was able to increase neuronal survival. In conclusion, our study demonstrates the presence and the importance of multiple routes of communication between MSCs and neurons. Such knowledge will allow a better understanding of the potential of MSCs and how to maximize their positive effect, with the final aim to provide the best protective treatment.


Asunto(s)
Células Madre Mesenquimatosas , Adulto , Comunicación Celular , Supervivencia Celular/fisiología , Técnicas de Cocultivo , Humanos , Células Receptoras Sensoriales
4.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36077454

RESUMEN

Oxaliplatin (OHP)-induced peripheral neurotoxicity (OIPN) is a frequent adverse event of colorectal cancer treatment. OIPN encompasses a chronic and an acute syndrome. The latter consists of transient axonal hyperexcitability, due to unbalance in Na+ voltage-operated channels (Na+VOC). This leads to sustained depolarisation which can activate the reverse mode of the Na+/Ca2+ exchanger 2 (NCX2), resulting in toxic Ca2+ accumulation and axonal damage (ADa). We explored the role of NCX2 in in vitro and in vivo settings. Embryonic rat Dorsal Root Ganglia (DRG) organotypic cultures treated with SEA0400 (SEA), a NCX inhibitor, were used to assess neuroprotection in a proof-of-concept and pilot study to exploit NCX modulation to prevent ADa. In vivo, OHP treated mice (7 mg/Kg, i.v., once a week for 8 weeks) were compared with a vehicle-treated group (n = 12 each). Neurophysiological and behavioural testing were performed to characterise acute and chronic OIPN, and morphological analyses were performed to detect ADa. Immunohistochemistry, immunofluorescence, and western blotting (WB) analyses were also performed to demonstrate changes in NCX2 immunoreactivity and protein expression. In vitro, NCX inhibition was matched by ADa mitigation. In the in vivo part, after verifyingboth acute and chronic OIPN had ensued, we confirmed via immunohistochemistry, immunofluorescence, and WB that a significant NCX2 alteration had ensued in the OHP group. Our data suggest NCX2 involvement in ADa development, paving the way to a new line of research to prevent OIPN.


Asunto(s)
Síndromes de Neurotoxicidad , Intercambiador de Sodio-Calcio , Animales , Axones/metabolismo , Ratones , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Oxaliplatino/efectos adversos , Proyectos Piloto , Ratas , Intercambiador de Sodio-Calcio/metabolismo
5.
Int J Mol Sci ; 22(3)2021 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-33525473

RESUMEN

Celiac disease (CD) is an autoimmune enteropathy arising in genetically predisposed subjects exposed to gluten, which activates both innate and adaptive immunity. Although the pathogenesis is common to all patients, the clinical spectrum is quite variable, and differences could be explained by gene expression variations. Among the factors able to affect gene expression, there are lncRNAs. We evaluated the expression profile of 87 lncRNAs in CD vs. healthy control (HC) intestinal biopsies by RT-qPCR array. Nuclear enriched abundant transcript 1 (NEAT1) and taurine upregulated gene 1 (TUG1) were detected as downregulated in CD patients at diagnosis, but their expression increased in biopsies of patients on a gluten-free diet (GFD) exposed to gluten. The increase in NEAT1 expression after gluten exposure was mediated by IL-15 and STAT3 activation and binding to the NEAT1 promoter, as demonstrated by gel shift assay. NEAT1 is localized in the nucleus and can regulate gene expression by sequestering transcription factors, and it has been implicated in immune regulation and control of cell proliferation. The demonstration of its regulation by gluten thus also supports the role of lncRNAs in CD and prompts further research on these RNAs as gene expression regulators.


Asunto(s)
Enfermedad Celíaca/genética , Regulación hacia Abajo , Duodeno/química , Gliadina/efectos adversos , ARN Largo no Codificante/genética , Adulto , Estudios de Casos y Controles , Enfermedad Celíaca/inmunología , Proliferación Celular , Células Cultivadas , Niño , Regulación hacia Abajo/efectos de los fármacos , Duodeno/inmunología , Femenino , Regulación de la Expresión Génica , Humanos , Inmunidad Innata , Interleucina-15/genética , Mucosa Intestinal/química , Mucosa Intestinal/inmunología , Masculino , Factor de Transcripción STAT3/genética
6.
Int J Mol Sci ; 22(3)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494384

RESUMEN

The onset of chemotherapy-induced peripheral neurotoxicity (CIPN) is a leading cause of the dose reduction or discontinuation of cancer treatment due to sensory symptoms. Paclitaxel (PTX) can cause painful peripheral neuropathy, with a negative impact on cancer survivors' quality of life. While recent studies have shown that neuroinflammation is involved in PTX-induced peripheral neurotoxicity (PIPN), the pathophysiology of this disabling side effect remains largely unclear and no effective therapies are available. Therefore, here we investigated the effects of human intravenous immunoglobulin (IVIg) on a PIPN rat model. PTX-treated rats showed mechanical allodynia and neurophysiological alterations consistent with a severe sensory axonal polyneuropathy. In addition, morphological evaluation showed a reduction of intra-epidermal nerve fiber (IENF) density and evidenced axonopathy with macrophage infiltration, which was more prominent in the distal segment of caudal nerves. Three weeks after the last PTX injection, mechanical allodynia was still present in PTX-treated rats, while the full recovery in the group of animals co-treated with IVIg was observed. At the pathological level, this behavioral result was paralleled by prevention of the reduction in IENF density induced by PTX in IVIg co-treated rats. These results suggest that the immunomodulating effect of IVIg co-treatment can alleviate PIPN neurotoxic manifestations, probably through a partial reduction of neuroinflammation.


Asunto(s)
Antineoplásicos Fitogénicos/efectos adversos , Inmunoglobulinas Intravenosas/administración & dosificación , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/etiología , Paclitaxel/efectos adversos , Enfermedades del Sistema Nervioso Periférico/tratamiento farmacológico , Enfermedades del Sistema Nervioso Periférico/etiología , Animales , Antineoplásicos Fitogénicos/uso terapéutico , Axones/efectos de los fármacos , Axones/metabolismo , Axones/patología , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Humanos , Hiperalgesia/diagnóstico , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Síndromes de Neurotoxicidad/diagnóstico , Paclitaxel/uso terapéutico , Enfermedades del Sistema Nervioso Periférico/diagnóstico , Ratas , Resultado del Tratamiento
7.
Int J Mol Sci ; 21(10)2020 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-32456361

RESUMEN

In northern Italy, biomass burning-derived (BB) particles and diesel exhaust particles (DEP) are considered the most significant contributors to ultrafine particle (UFP) emission. However, a comparison between their impact on different brain regions was not investigated until now. Therefore, male BALB/c mice were treated with a single or three consecutive intratracheal instillations using 50 µg of UFPs in 100 µL of isotonic saline solution or 100 µL of isotonic saline solution alone, and brains were collected and analyzed. Proteins related to oxidative stress and inflammation, as well as Alzheimer's disease markers, were examined in the hippocampus, cerebellum, and the rest of the brain (RoB). Histopathological examination of the brain was also performed. Moreover, correlations among different brain, pulmonary, and cardiovascular markers were performed, allowing us to identify the potentially most stressful UFP source. Although both acute exposures induced inflammatory pathways in mouse brain, only DEP showed strong oxidative stress. The sub-acute exposure also induced the modulation of APP and BACE1 protein levels for both UFPs. We observed that DEP exposure is more harmful than BB, and this different response could be explained by this UFP's different chemical composition and reactivity.


Asunto(s)
Contaminación del Aire/efectos adversos , Encéfalo/efectos de los fármacos , Inflamación , Enfermedades Neurodegenerativas/inducido químicamente , Estrés Oxidativo , Animales , Encéfalo/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Material Particulado/toxicidad , Emisiones de Vehículos/toxicidad
8.
Int J Mol Sci ; 20(11)2019 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-31181746

RESUMEN

Exposure to ultrafine particles (UFPs) leads to adverse effects on health caused by an unbalanced ratio between UFPs deposition and clearance efficacy. Since air pollution toxicity is first direct to cardiorespiratory system, we compared the acute and sub-acute effects of diesel exhaust particles (DEP) and biomass burning-derived particles (BB) on bronchoalveolar Lavage Fluid (BALf), lung and heart parenchyma. Markers of cytotoxicity, oxidative stress and inflammation were analysed in male BALB/c mice submitted to single and repeated intra-tracheal instillations of 50 µg UFPs. This in-vivo study showed the activation of inflammatory response (COX-2 and MPO) after exposure to UFPs, both in respiratory and cardiovascular systems. Exposure to DEP results also in pro- and anti-oxidant (HO-1, iNOS, Cyp1b1, Hsp70) protein levels increase, although, stress persist only in cardiac tissue under repeated instillations. Statistical correlations suggest that stress marker variation was probably due to soluble components and/or mediators translocation of from first deposition site. This mechanism, appears more important after repeated instillations, since inflammation and oxidative stress endure only in heart. In summary, chemical composition of UFPs influenced the activation of different responses mediated by their components or pro-inflammatory and pro-oxidative molecules, indicating DEP as the most damaging pollutant in the comparison.


Asunto(s)
Exposición por Inhalación/efectos adversos , Material Particulado/toxicidad , Emisiones de Vehículos/toxicidad , Animales , Biomarcadores/análisis , Líquido del Lavado Bronquioalveolar/química , Ciclooxigenasa 2/análisis , Citocromo P-450 CYP1B1/análisis , Proteínas HSP70 de Choque Térmico/análisis , Hemo-Oxigenasa 1/análisis , Inflamación/etiología , Masculino , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico Sintasa de Tipo II/análisis
9.
J Neuroinflammation ; 15(1): 232, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30131066

RESUMEN

BACKGROUND: Chemotherapy-induced peripheral neurotoxicity (CIPN) is a severe adverse effect in patients receiving antitumor agents, and no effective treatment is available. Although the mechanisms responsible for the development of CIPN are poorly understood, recent findings make neuroinflammation an attractive target to be investigated, particularly when neuropathic pain is a prominent feature such as after bortezomib administration. The aim of our study was to evaluate the effect of intravenous immunoglobulins (IVIg) delivery in chronic CIPN. The related neuro-immune aspects were investigated in a well-characterized rat model of bortezomib-induced peripheral neurotoxicity (BIPN). METHODS: After determination of a suitable schedule based on a preliminary pharmacokinetic pilot study, female Wistar rats were treated with IVIg 1 g/kg every 2 weeks. IVIg treatment was started at the beginning of bortezomib administration ("preventive" schedule), or once BIPN was already ensued after 4 weeks of treatment ("therapeutic" schedule). Neurophysiological and behavioral studies were performed to assess the extent of painful peripheral neurotoxicity induced by bortezomib, and these functional assessments were completed by pathologic examination of peripheral nerves and intraepidermal nerve fiber quantification (IENF). The role of the innate immune response in BIPN was investigated by immunochemistry characterization of macrophage infiltration in peripheral nerves. RESULTS: Both schedules of IVIg administration were able to significantly reduce bortezomib-induced heat and mechanical allodynia. Although these changes were not evidenced at the neurophysiological examination of peripheral nerves, they behavioral effects were paralleled in the animals treated with the preventive schedule by reduced axonopathy in peripheral nerves and significant protection from loss of IENF. Moreover, IVIg administration was very effective in reducing infiltration in peripheral nerves of macrophages with the M1, pro-inflammatory phenotype. CONCLUSION: Our results suggest a prominent role of neuroinflammation in BIPN and that IVIg might be considered as a possible safe and effective therapeutic option preventing M1 macrophage infiltration. However, since neuropathic pain is frequent also in other CIPN types, it also indicates the need for further investigation in other forms of CIPN.


Asunto(s)
Inmunoglobulinas/uso terapéutico , Factores Inmunológicos/uso terapéutico , Macrófagos/efectos de los fármacos , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/patología , Nervios Periféricos/patología , Animales , Antineoplásicos/toxicidad , Peso Corporal/efectos de los fármacos , Bortezomib/toxicidad , Citocinas/metabolismo , Modelos Animales de Enfermedad , Calor/efectos adversos , Hiperalgesia/tratamiento farmacológico , Hiperalgesia/etiología , Macrófagos/patología , Fibras Nerviosas/efectos de los fármacos , Fibras Nerviosas/patología , Conducción Nerviosa/efectos de los fármacos , Síndromes de Neurotoxicidad/etiología , Infiltración Neutrófila , Estimulación Física/efectos adversos , Ratas , Umbral Sensorial/efectos de los fármacos , Piel/patología
10.
Am J Gastroenterol ; 109(10): 1662-74, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25070052

RESUMEN

OBJECTIVES: microRNAs (miRNAs) are short RNAs that regulate gene expression in various processes, including immune response. Altered immune response is a pivotal event in the pathogenesis of celiac disease (CD), and miRNAs could have a role in modulating both innate and adaptive response to gluten in celiac patients. METHODS: We compared miRNA profiles in duodenal biopsies of controls and CD patients by miRNA array. Differentially expressed miRNAs were validated in controls, Marsh 3A-B, and Marsh 3C patients by quantitative PCR (qPCR). Target gene expression was assessed by qPCR, western blotting, and immunohistochemistry, and the effect of gliadin was evaluated by in vitro stimulation experiments on duodenal biopsies. RESULTS: Seven miRNAs were identified as significantly downregulated in the duodenum of adult CD patients as compared with controls. qPCR validated the decreased expression of miR-192-5p, miR-31-5p, miR-338-3p, and miR-197, in particular in patients with more severe histological lesions (Marsh 3C). In silico analysis of possible miRNA targets identified several genes involved in innate and adaptive immunity. Among these, chemokine C-X-C motif ligand 2 (CXCL2) and NOD2 showed significantly increased mRNA and protein level in Marsh 3C patients and a significant inverse correlation with the regulatory miR-192-5p. In addition, forkhead box P3 (FOXP3), Run-related transcription factor 1, and interleukin-18 (targets of miR-31-5p, miR-338-3p, and miR-197, respectively) showed upregulation in CD patients. Furthermore, alterations in CXCL2 and NOD2, FOXP3, miR-192-5p, and miR-31-5p expression were triggered by gliadin exposure in CD patients. CONCLUSIONS: miRNA expression is significantly altered in duodenal mucosa of CD patients, and this alteration can increase the expression of molecules involved in immune response.


Asunto(s)
Inmunidad Adaptativa/fisiología , Enfermedad Celíaca/genética , Enfermedad Celíaca/inmunología , Inmunidad Innata/fisiología , MicroARNs/metabolismo , Adulto , Estudios de Casos y Controles , Enfermedad Celíaca/metabolismo , Estudios de Cohortes , Duodeno/metabolismo , Duodeno/patología , Femenino , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Análisis por Micromatrices , Persona de Mediana Edad
11.
Toxics ; 11(2)2023 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-36850969

RESUMEN

Chemotherapy-induced peripheral neurotoxicity is one of the most common dose-limiting toxicities of several widely used anticancer drugs such as platinum derivatives (cisplatin) and taxanes (paclitaxel). Several molecular mechanisms related to the onset of neurotoxicity have already been proposed, most of them having the sensory neurons of the dorsal root ganglia (DRG) and the peripheral nerve fibers as principal targets. In this study we explore chemotherapy-induced peripheral neurotoxicity beyond the neuronocentric view, investigating the changes induced by paclitaxel (PTX) and cisplatin (CDDP) on satellite glial cells (SGC) in the DRG and their crosstalk. Rats were chronically treated with PTX (10 mg/Kg, 1qwx4) or CDDP (2 mg/Kg 2qwx4) or respective vehicles. Morpho-functional analyses were performed to verify the features of drug-induced peripheral neurotoxicity. Qualitative and quantitative immunohistochemistry, 3D immunofluorescence, immunoblotting, and transmission electron microscopy analyses were also performed to detect alterations in SGCs and their interconnections. We demonstrated that PTX, but not CDDP, produces a strong activation of SGCs in the DRG, by altering their interconnections and their physical contact with sensory neurons. SGCs may act as principal actors in PTX-induced peripheral neurotoxicity, paving the way for the identification of new druggable targets for the treatment and prevention of chemotherapy-induced peripheral neurotoxicity.

12.
Front Pharmacol ; 12: 817236, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35126148

RESUMEN

Chemotherapy-induced peripheral neurotoxicity is a common dose-limiting side effect of several cancer chemotherapeutic agents, and no effective therapies exist. Here we constructed a systems pharmacology model of intracellular signaling in peripheral neurons to identify novel drug targets for preventing peripheral neuropathy associated with proteasome inhibitors. Model predictions suggested the combinatorial inhibition of TNFα, NMDA receptors, and reactive oxygen species should prevent proteasome inhibitor-induced neuronal apoptosis. Dexanabinol, an inhibitor of all three targets, partially restored bortezomib-induced reduction of proximal action potential amplitude and distal nerve conduction velocity in vitro and prevented bortezomib-induced mechanical allodynia and thermal hyperalgesia in rats, including a partial recovery of intraepidermal nerve fiber density. Dexanabinol failed to restore bortezomib-induced decreases in electrophysiological endpoints in rats, and it did not compromise bortezomib anti-cancer effects in U266 multiple myeloma cells and a murine xenograft model. Owing to its favorable safety profile in humans and preclinical efficacy, dexanabinol might represent a treatment option for bortezomib-induced neuropathic pain.

13.
Pain ; 161(2): 405-415, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31634341

RESUMEN

Oxaliplatin is a cornerstone chemotherapeutic used in the treatment of colorectal cancer, the third leading cause of death in Western countries. Most side effects of this platinum-containing drug are adequately managed in the clinic, although acute and long-term neurotoxicity still severely compromises the quality of life of patients treated with oxaliplatin. We have previously demonstrated that therapeutically relevant concentrations/doses of oxaliplatin lead to a reduction in intracellular pH in mouse dorsal root ganglion (DRG) neurons in vitro and in vivo and that this alteration sensitizes TRPA1 and TRPV1 channels, which most likely mediate the allodynia associated with treatment. In this study, we show that oxaliplatin leads to a reduction of intracellular pH by forming adducts with neuronal haemoglobin, which acts in this setting as a proton buffer. Furthermore, we show that FDA-approved drugs that inhibit carbonic anhydrase (an enzyme that is linked to haemoglobin in intracellular pH homeostasis), ie, topiramate and acetazolamide, revert (1) oxaliplatin-induced cytosolic acidification and TRPA1 and TRPV1 modulation in DRG neurons in culture, (2) oxaliplatin-induced cytosolic acidification of DRG of treated animals, and (3) oxaliplatin-induced acute cold allodynia in mice while not affecting OHP-induced cytotoxicity on cancer cells. Our data would therefore suggest that reversal of oxaliplatin-induced cytosolic acidification is a viable strategy to minimize acute oxaliplatin-induced symptoms.


Asunto(s)
Antineoplásicos/toxicidad , Inhibidores de Anhidrasa Carbónica/farmacología , Hemoglobinas/efectos de los fármacos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Neuronas/efectos de los fármacos , Oxaliplatino/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Acetazolamida/farmacología , Animales , Tampones (Química) , Ganglios Espinales/citología , Células HEK293 , Hemoglobinas/genética , Hemoglobinas/metabolismo , Humanos , Hiperalgesia , Ratones , Ratones Endogámicos BALB C , Neuronas/metabolismo , Cultivo Primario de Células , Protones , Topiramato/farmacología , Canales de Potencial de Receptor Transitorio
14.
Front Chem ; 8: 524, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32760695

RESUMEN

The development of 3D printable hydrogels based on the crosslinking between chitosan and gelatin is proposed. Chitosan and gelatin were both functionalized with methyl furan groups. Chemical modification was performed by reductive amination with methyl furfural involving the lysine residues of gelatin and the amino groups of chitosan to generate hydrogels with tailored properties. The methyl furan residues present in both polymers were exploited for efficient crosslinking via Diels-Alder ligation with PEG-Star-maleimide under cell-compatible conditions. The obtained chitosan-gelatin hybrid was employed to formulate hydrogels and 3D printable biopolymers and its processability and biocompatibility were preliminarily investigated.

15.
J Neurosci Methods ; 339: 108744, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32353471

RESUMEN

BACKGROUND: Dense and unbiased cellular-resolution representations of extended volumetric central nervous system soft-tissue anatomy are difficult to obtain, even in experimental post-mortem settings. Interestingly, X-ray phase-contrast computed tomography (X-PCI-CT), an emerging soft-tissue-sensitive volumetric imaging technique, can provide multiscale organ- to cellular-level morphological visualizations of neuroanatomical structure. NEW METHOD: Here, we tested different nervous-tissue fixation procedures, conventionally used for transmission electron microscopy, to better establish X-PCI-CT-specific sample-preparation protocols. Extracted rat spinal medullas were alternatively fixed with a standard paraformaldehyde-only aldehyde-based protocol, or in combination with glutaraldehyde. Some specimens were additionally post-fixed with osmium tetroxide. Multiscale X-PCI-CT datasets were collected at several synchrotron radiation facilities, using state-of-the-art setups with effective image voxel sizes of 3.03 to 0.33 µm3, and compared to high-field magnetic resonance imaging, histology and vascular fluorescence microscopy data. RESULTS: Multiscale X-PCI-CT of aldehyde-fixed spinal cord specimens resulted in dense histology-like volumetric representations and quantifications of extended deep spinal micro-vascular networks and of intra-medullary cell populations. Osmium post-fixation increased intra-medullary contrast between white and gray-matter tissues, and enhanced delineation of intra-medullary cellular structure, e.g. axon fibers and motor neuron perikarya. COMPARISON WITH EXISTING METHODS: Volumetric X-PCI-CT provides complementary contrast and higher spatial resolution compared to 9.4 T MRI. X-PCI-CT's advantage over planar histology is the volumetric nature of the cellular-level data obtained, using samples much larger than those fit for volumetric vascular fluorescence microscopy. CONCLUSIONS: Deliberately choosing (post-)fixation protocols tailored for optimal nervous-tissue structural preservation is of paramount importance in achieving effective and targeted neuroimaging via the X-PCI-CT technique.


Asunto(s)
Osmio , Intervención Coronaria Percutánea , Aldehídos , Animales , Ratas , Roedores , Médula Espinal/diagnóstico por imagen , Microtomografía por Rayos X , Rayos X
16.
Neuropharmacology ; 164: 107905, 2020 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-31811874

RESUMEN

Oxaliplatin (OHP) Induced Peripheral Neurotoxicity (OIPN) is one of the dose-limiting toxicities of the drug and these adverse effects limit cancer therapy with L-OHP, used for colorectal cancer treatment. Acute neurotoxicity consists of symptoms that are the hallmarks of a transient axonal hyperexcitability; chronic neurotoxicity has a clinical picture compatible with a length-dependent sensory neuropathy. Acute OIPN pathogenesis has been linked to sodium voltage-operated channels (Na + VOC) dysfunction and it has been advocated as a possible predisposing factor to chronic neurotoxicity. We tested if topiramate (TPM), a well-known Na + VOC modulator, was able to modify acute as well as chronic OIPN. The project was divided into two parts. In Experiment 1 we tested by means of Nerve Excitability Testing (NET) a cohort of female Wistar rats to assess TPM effects after a single OHP administration (5 mg/kg, iv). In Experiment 2 we assessed TPM effects after chronic OHP treatment (5 mg/kg, 2qw4ws, iv) using NET, nerve conduction studies (NCS), behavioral tests and neuropathology (caudal nerve morphometry and morphology and Intraepidermal Nerve Fiber [IENF] density). In Experiment 1 TPM was able to prevent OHP effects on Na + VOC: OHP treatment induced a highly significant reduction of the sensory nerve's threshold, during the superexcitability period (p-value = 0.008), whereas TPM co-administration prevented this effect. In Experiment 2 we verified that TPM was able to prevent not only acute phenomena, but also to completely prevent chronic OIPN. This latter observation was supported by a multimodal approach: in fact, only OHP group showed altered findings compared to CTRL group at a neurophysiological (proximal caudal nerve sensory nerve action potential [SNAP] amplitude, p-value = 0.001; distal caudal nerve SNAP amplitude, p-value<0.001, distal caudal nerve sensory conduction velocity, p-value = 0.04), behavioral (mechanical threshold, p-value 0.003) and neuropathological levels (caudal nerve fibers density, p-value 0.001; IENF density, p-value <0.001). Our data show that TPM is a promising drug to prevent both acute and chronic OIPN. These findings have a high translational potential, since they were obtained using outcome measures that match clinical practice and TPM is already approved for clinical use being free from detrimental interaction with OHP anticancer properties.


Asunto(s)
Antineoplásicos/toxicidad , Axones/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/prevención & control , Oxaliplatino/antagonistas & inhibidores , Oxaliplatino/toxicidad , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Enfermedades del Sistema Nervioso Periférico/prevención & control , Topiramato/farmacología , Animales , Femenino , Conducción Nerviosa/efectos de los fármacos , Dimensión del Dolor , Ratas , Ratas Wistar
17.
Endocr Dev ; 14: 114-34, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19293579

RESUMEN

Developmental syndromes are characterized by numerous phenotypical signs and malformations. In most of them such as Turner, Noonan, Prader-Willi, Silver-Russel, Williams, Kabuki, Leri-Weill syndrome and skeletal dysplasias, short stature is a common feature. Growth defect is very often related to a defect in cellular growth, but some unknown abnormality in GH action is possible. Recently, the greater availability of recombinant GH has expanded the interest towards GH secretion and therapy also in developmental syndromes. We recognize syndromes associated with GH deficiency (GHD), showing a developmental midline defect such as Pallister-Hall syndrome, septo-optic dysplasia, but many of these conditions do not have a convincing link with GHD. Moreover, some conditions, in particular the well-studied Turner syndrome, that do not have a real GHD, have proven to benefit from GH therapy at supra-physiological doses obtaining a higher final height than the expected one according to the natural history. This has expanded the indications for GH therapy. The aim of our paper is to review the literature on GH secretion, on the effects and costs-benefits of GH therapy in many dysmorphic syndromes, presenting some results of GH secretion and therapy obtained in our experience.


Asunto(s)
Trastornos del Crecimiento/tratamiento farmacológico , Trastornos del Crecimiento/fisiopatología , Hormona de Crecimiento Humana/deficiencia , Hormona de Crecimiento Humana/uso terapéutico , Humanos , Discapacidad Intelectual/tratamiento farmacológico , Discapacidad Intelectual/fisiopatología , Síndrome
18.
Front Aging Neurosci ; 11: 299, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31749696

RESUMEN

Aging is associated with an exaggerated response to peripheral inflammatory challenges together with behavioral and cognitive deficits. Studies considering both age and sex remain limited, despite sex dimorphism of astrocytes and microglial cells is largely recognized. To fill this knowledge gap, we investigated the effect of a single intraperitoneal lipopolysaccharide (LPS) administration in adult and aged mice. We assessed the expression of different inflammatory mediators, and the microglial response through binding of [18F]-VC701 tracer to translocator protein (TSPO) receptors in the male and female brain. Aged female brain showed a higher pro-inflammatory response to LPS compared to adult female and to aged male, as revealed by ex vivo binding to TSPO receptors and pro-inflammatory mediator transcript levels. The highest astroglial reaction was observed in the brain of aged females. Differently to the other groups of animals, in aged males LPS challenge did not affect transcription of triggering receptor expressed on myeloid cells 2 (TREM2). In conclusion, our study shows that in the mouse's brain the neuro-inflammatory response to an acute peripheral insult is sex- and age-dependent. Moreover, our results might set the basis for further studies aimed at identifying sex-related targets involved in the modulation of the aberrant neuro-inflammatory response that characterizes aging. This knowledge could be relevant for the treatment of conditions such as delirium and dementia.

19.
Cancer Res ; 78(3): 817-829, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29191802

RESUMEN

Chemotherapy-induced peripheral neuropathy (CIPN) is a major cause of disability in cancer survivors. CIPN investigations in preclinical model systems have focused on either behaviors or acute changes in nerve conduction velocity (NCV) and amplitude, but greater understanding of the underlying nature of axonal injury and its long-term processes is needed as cancer patients live longer. In this study, we used multiple independent endpoints to systematically characterize CIPN recovery in mice exposed to the antitubulin cancer drugs eribulin, ixabepilone, paclitaxel, or vinorelbine at MTDs. All of the drugs ablated intraepidermal nerve fibers and produced axonopathy, with a secondary disruption in myelin structure within 2 weeks of drug administration. In addition, all of the drugs reduced sensory NCV and amplitude, with greater deficits after paclitaxel and lesser deficits after ixabepilone. These effects correlated with degeneration in dorsal root ganglia (DRG) and sciatic nerve and abundance of Schwann cells. Although most injuries were fully reversible after 3-6 months after administration of eribulin, vinorelbine, and ixabepilone, we observed delayed recovery after paclitaxel that produced a more severe, pervasive, and prolonged neurotoxicity. Compared with other agents, paclitaxel also displayed a unique prolonged exposure in sciatic nerve and DRG. The most sensitive indicator of toxicity was axonopathy and secondary myelin changes accompanied by a reduction in intraepidermal nerve fiber density. Taken together, our findings suggest that intraepidermal nerve fiber density and changes in NCV and amplitude might provide measures of axonal injury to guide clinical practice.Significance: This detailed preclinical study of the long-term effects of widely used antitubulin cancer drugs on the peripheral nervous system may help guide clinical evaluations to improve personalized care in limiting neurotoxicity in cancer survivors. Cancer Res; 78(3); 817-29. ©2017 AACR.


Asunto(s)
Ganglios Espinales/efectos de los fármacos , Microtúbulos/efectos de los fármacos , Enfermedades del Sistema Nervioso Periférico/inducido químicamente , Recuperación de la Función/efectos de los fármacos , Células de Schwann/efectos de los fármacos , Nervio Ciático/efectos de los fármacos , Moduladores de Tubulina/toxicidad , Enfermedad Aguda , Animales , Células Cultivadas , Femenino , Ganglios Espinales/lesiones , Ganglios Espinales/patología , Ratones , Ratones Endogámicos BALB C , Microtúbulos/patología , Enfermedades del Sistema Nervioso Periférico/patología , Células de Schwann/patología , Nervio Ciático/lesiones , Nervio Ciático/patología
20.
PLoS One ; 12(10): e0186250, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29020118

RESUMEN

Peripheral neurotoxicity is one of the most distressing side effects of oxaliplatin therapy for cancer. Indeed, most patients that received oxaliplatin experience acute and/or chronic severe sensory peripheral neuropathy. However, despite similar co-morbidities, cancer stage, demographics and treatment schedule, patients develop oxaliplatin-induced peripheral neurotoxicity with remarkably different severity. This suggests individual genetic variability, which might be used to glean the mechanistic insights into oxaliplatin neurotoxicity. We characterized the susceptibility of different mice strains to oxaliplatin neurotoxicity investigating the phenotypic features of neuropathy and gene expression profiles in dorsal root ganglia of six genetically different mice strains (Balb-c, C57BL6, DBA/2J, AJ, FVB and CD1) exposed to the same oxaliplatin schedule. Differential gene expression in dorsal root ganglia from each mice strain were assayed using a genome-wide expression analysis and selected genes were validated by RT-PCR analysis. The demonstration of consistent differences in the phenotypic response to oxaliplatin across different strains is interesting to allow the selection of the appropriate strain based on the pre-defined read-out parameters. Further investigation of the correlation between gene expression changes and oxaliplatin-induced neurotoxicity phenotype in each strain will be useful to deeper investigate the molecular mechanisms of oxaliplatin neurotoxicity.


Asunto(s)
Predisposición Genética a la Enfermedad , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/patología , Compuestos Organoplatinos/efectos adversos , Sistema Nervioso Periférico/patología , Enfermedad Aguda , Animales , Biopsia , Enfermedad Crónica , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/patología , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos , Vaina de Mielina/metabolismo , Conducción Nerviosa/efectos de los fármacos , Neuralgia/complicaciones , Neuralgia/genética , Neuralgia/patología , Neuronas/metabolismo , Neuronas/patología , Síndromes de Neurotoxicidad/complicaciones , Síndromes de Neurotoxicidad/fisiopatología , Oxaliplatino , Dimensión del Dolor , Sistema Nervioso Periférico/fisiopatología , Reacción en Cadena en Tiempo Real de la Polimerasa , Nervio Ciático/patología , Nervio Ciático/fisiopatología , Piel/patología , Asta Dorsal de la Médula Espinal/efectos de los fármacos , Asta Dorsal de la Médula Espinal/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda