Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232804

RESUMEN

CHARGE syndrome is a rare congenital disorder frequently caused by mutations in the chromodomain helicase DNA-binding protein-7 CHD7. Here, we developed and systematically characterized two genetic mouse models with identical, heterozygous loss-of-function mutation of the Chd7 gene engineered on inbred and outbred genetic backgrounds. We found that both models showed consistent phenotypes with the core clinical manifestations seen in CHARGE syndrome, but the phenotypes in the inbred Chd7 model were more severe, sometimes having reduced penetrance and included dysgenesis of the corpus callosum, hypoplasia of the hippocampus, abnormal retrosplenial granular cortex, ventriculomegaly, hyperactivity, growth delays, impaired grip strength and repetitive behaviors. Interestingly, we also identified previously unreported features including reduced levels of basal insulin and reduced blood lipids. We suggest that the phenotypic variation reported in individuals diagnosed with CHARGE syndrome is likely due to the genetic background and modifiers. Finally, our study provides a valuable resource, making it possible for mouse biologists interested in Chd7 to make informed choices on which mouse model they should use to study phenotypes of interest and investigate in more depth the underlying cellular and molecular mechanisms.


Asunto(s)
Síndrome CHARGE , Proteínas de Unión al ADN/metabolismo , Animales , Síndrome CHARGE/diagnóstico , Síndrome CHARGE/genética , Cuerpo Calloso/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , Proteínas de Unión al ADN/genética , Insulinas/genética , Ratones , Mutación
2.
Nat Commun ; 10(1): 3465, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31371714

RESUMEN

Brain morphogenesis is an important process contributing to higher-order cognition, however our knowledge about its biological basis is largely incomplete. Here we analyze 118 neuroanatomical parameters in 1,566 mutant mouse lines and identify 198 genes whose disruptions yield NeuroAnatomical Phenotypes (NAPs), mostly affecting structures implicated in brain connectivity. Groups of functionally similar NAP genes participate in pathways involving the cytoskeleton, the cell cycle and the synapse, display distinct fetal and postnatal brain expression dynamics and importantly, their disruption can yield convergent phenotypic patterns. 17% of human unique orthologues of mouse NAP genes are known loci for cognitive dysfunction. The remaining 83% constitute a vast pool of genes newly implicated in brain architecture, providing the largest study of mouse NAP genes and pathways. This offers a complementary resource to human genetic studies and predict that many more genes could be involved in mammalian brain morphogenesis.


Asunto(s)
Encéfalo , Estudios de Asociación Genética , Morfogénesis/genética , Neuroanatomía , Neurogénesis/genética , Animales , Encéfalo/metabolismo , Ciclo Celular , Cognición , Citoesqueleto , Redes Reguladoras de Genes , Genes Letales/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Animales , Mutación , Fenotipo , Sinapsis
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda