RESUMEN
Cancer vaccines have been developed as a promising way to boost cancer immunity. However, their clinical potency is often limited due to the imprecise delivery of tumor antigens. To overcome this problem, we conjugated an endogenous Toll-like receptor (TLR)2/6 ligand, UNE-C1, to human papilloma virus type 16 (HPV-16)-derived peptide antigen, E7, and found that the UNE-C1-conjugated cancer vaccine (UCV) showed significantly enhanced antitumor activity in vivo compared with the noncovalent combination of UNE-C1 and E7. The combination of UCV with PD-1 blockades further augmented its therapeutic efficacy. Specifically, the conjugation of UNE-C1 to E7 enhanced its retention in inguinal draining lymph nodes, the specific delivery to dendritic cells and E7 antigen-specific T cell responses, and antitumor efficacy in vivo compared with the noncovalent combination of the two peptides. These findings suggest the potential of UNE-C1 derived from human cysteinyl-tRNA synthetase 1 as a unique vehicle for the specific delivery of cancer antigens to antigen-presenting cells via TLR2/6 for the improvement of cancer vaccines.
Asunto(s)
Células Presentadoras de Antígenos , Vacunas contra el Cáncer , Proteínas E7 de Papillomavirus , Receptor Toll-Like 2 , Vacunas contra el Cáncer/inmunología , Animales , Ratones , Receptor Toll-Like 2/metabolismo , Humanos , Proteínas E7 de Papillomavirus/inmunología , Proteínas E7 de Papillomavirus/metabolismo , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Línea Celular Tumoral , Ligandos , Femenino , Ratones Endogámicos C57BL , Antígenos de Neoplasias/inmunología , Modelos Animales de EnfermedadRESUMEN
Androgenetic alopecia is a common disease that occurs in both men and women. Several approved medications have been used to treat this condition, but they are associated with certain side effects. Therefore, use of extracts derived from natural products, such as Siberian sturgeon (Acipenser baerii), and the regulation of the gut microbiota have become important topics of research. Sturgeon is known for its high nutritional value and anti-inflammatory properties; however, its effects on androgenetic alopecia and gut microbiota remain uncharacterized. Here, we aimed to investigate whether solubilized sturgeon oil (SSO) promotes hair growth and regulates the gut microbiome. C57BL/6 mice were divided into four groups. Three groups received topical applications of distilled water, SSO, or minoxidil, and one group was orally administered SSO. Each treatment was administered over 4 weeks. Histopathological analysis revealed a significant increase in follicle number (p < 0.001) and follicle diameter (p < 0.05). Immunohistochemical analysis revealed upregulation of ß-catenin and ERK-1, markers involved in hair growth-promoting pathways. Furthermore, microbiome analysis revealed that the reduced gut microbiota was negatively correlated with these markers. Our findings indicate that oral administration of SSO promotes hair growth and regulates the abundance of hair growth-promoting gut microbiota.
RESUMEN
There is urgent need in effective and cost-efficient data storage as worldwide requirement of data storage rapidly growing. DNA has introduced a new tool for storing digital information. Recent studies successfully store digital information such as text and gif animation. Previous studies tackle technical hurdles due to errors from DNA synthesis and sequencing. Studies also have focused on the strategy which makes use of 100-150 bps of read size in both synthesis and sequencing. In this paper, we suggest novel data encoding / decoding scheme which makes use of long read DNA (~1,000bp). This enables accurate recovery of stored digital information with a smaller number of reads than previous approach. Also, the approach reduces sequencing time.