Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Angew Chem Int Ed Engl ; : e202411513, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39160692

RESUMEN

The dynamic behaviour of metal-ligand bonding cultivates stimuli-mediated structural transformations in self-assembled molecular architectures. The propensity of synthetically designed self-assembled systems to interchange between higher-order architectures is increased multi-fold when the building blocks have higher conformational degrees of freedom. Herein, we report a new ligand, (2,7-bis(di(pyridin-4-yl)amino)-9H-fluoren-9-one) (L), which, upon self-assembly with a cis-[(ethylene-1,2-diamine)Pd(NO3)2] acceptor (M), resulted in the formation of a M6L3 trifacial barrel (C1) in water. Interestingly, during crystallization, a rare M12L6 triangular orthobicupola architecture (C2) was generated along with C1. C2 could also be generated in solution via the application of several stimuli. C1 in aqueous medium could stabilize one trans-stilbene (tS) or cis-stilbene (cS) molecule in its cavity, with a selectivity for the former from their mixture. Moreover, C1 acted as an effective host to prevent the otherwise facile photoisomerization of tS to cS inside its hydrophobic cavity under UV irradiation. Conversely, the visible-light-induced reverse isomerization of encapsulated cS to encapsulated tS could be achieved readily due to the better stabilization of tS within the cavity of C1 and its transparency to visible light. A multi-functional system was therefore designed, which at the same time is stimuli-responsive, shows isomer selectivity, and photo-protects trans-stilbene.

2.
J Am Chem Soc ; 145(14): 7692-7711, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36976105

RESUMEN

Self-assembled discrete molecular architectures that show selective molecular recognition within their internal cavities are highly desirable. Such hosts often show guest recognition through several noncovalent interactions. This emulates the activity of naturally occurring enzymes and proteins. Research in the formation of 3D cages of different shapes and sizes has progressed rapidly since the development of coordination-driven self-assembly and dynamic covalent chemistry. Such molecular cages find applications in catalysis, stabilization of metastable molecules, purification of isomeric mixtures via selective encapsulation, and even in biomedical applications. Most of these applications stem from the ability of the host cages to bind guests strongly in a selective fashion, providing a suitable environment for the guests to perform their functions. Molecular cages having closed architectures with small windows either show poor encapsulation or inhibit easy guest release while those with wide open structures fail to form stable host-guest complexes. In this context, molecular barrels obtained by dynamic metal-ligand/covalent bond formation techniques possess optimized architectures. With a hollow-walled cavity and two large openings, molecular barrels satisfy the structural requirements for many applications. In this perspective, we will discuss in detail the synthetic strategies for obtaining barrels or barrel-like architectures employing dynamic coordination and covalent interactions, their structure-based classification, and their applications in catalysis, storing transient molecules, separation of chemicals, and photoinduced antibacterial activity. We aim to highlight the structural advantages of molecular barrels over other architectures for efficiently carrying out several functions and for the development of new applications.

3.
Angew Chem Int Ed Engl ; 62(28): e202305338, 2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37162028

RESUMEN

Construction of metal-organic cages with unique architecture and guest binding abilities is highly desirable. Herein, we report the synthesis of a distorted trigonal cage (1) from a twisted tetratopic ligand (L) and a PdII acceptor. Surprisingly, 1 exhibited a complete structural reorganization of its building units in the presence of C70 and C60 to form guest-encapsulated tetragonal cages, (C70 )2 @2 and (C60 )2 @2, respectively. These guest-bound cages were found to be potential 1 O2 generators, with the former effectively catalyzing two different varieties of 1 O2 -mediated oxidation reactions.

4.
Inorg Chem ; 61(4): 2368-2377, 2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35029966

RESUMEN

Self-assembly of naked PdII ions separately with newly designed bis(3-pyridyl)benzothiadiazole (L1) and bis(3-pyridyl)thiazolo[5,4-d]thiazole (L2) donors separately, under varying experimental conditions, yielded Pd4L8 (L= L1 or L2) tetrahedral cages and their homologous Pd3L6 (L= L1 or L2) double-walled triangular macrocycles. The resulting assemblies exhibited solvent, temperature, and counteranion induced dynamic equilibrium. Treatment of L1 with Pd(BF4)2 in acetonitrile (ACN) resulted in selective formation of a tetrahedral cage [Pd4(L1)8](BF4)8 (1a), which is in dynamic equilibrium with its homologue triangle [Pd3(L1)6](BF4)6 (2a) in dimethyl sulfoxide (DMSO). On the other hand, similar self-assembly using L2 instead of L1 yielded an equilibrium mixture of tetrahedral cage [Pd4(L2)8](BF4)8 (3a) and triangle [Pd3(L2)6](BF4)6 (4a) forms in both ACN and DMSO. The assembles were characterized by multinuclear NMR and ESI-MS while the structure of the tetrahedral cage (1a) was determined by single crystal X-ray diffraction. Existence of a dynamic equilibrium between the assemblies in solution has been investigated via variable temperature 1H NMR. The equilibrium constant K = ([Pd4L8]3/[Pd3L6]4) was calculated at each experimental temperature and fitted with the Van't Hoff equation to determine the standard enthalpy (ΔH°) and entropy (ΔS°) associated with the interconversion of the double-walled triangle to tetrahedral cage. The thermodynamic feasibility of structural interconversion was analyzed from the change in ΔG°, which suggests favorable conversion of Pd3L6 triangle to Pd4L8 cage at elevated temperature for L1 in DMSO and L2 in ACN. Interestingly, similar self-assembly reactions of L1 and L2 with Pd(NO3)2 instead of Pd(BF4)2 resulted in selective formation of a tetrahedral cage [Pd4(L1)8](NO3)8 (1b) and double-walled triangle [Pd3(L2)6](NO3)6 (4b), respectively.

5.
JACS Au ; 3(7): 1998-2006, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37502154

RESUMEN

Structural and functional modulation of three-dimensional artificial macromolecular systems is of immense importance. Designing supramolecular cages that can show stimuli mediated reversible switching between higher-order structures is quite challenging. We report here construction of a Pd6 trifacial barrel (1) by coordination self-assembly. Surprisingly, barrel 1 was found to exhibit guest-responsive behavior. In presence of fullerenes C60 and C70, 1 unprecedentedly transformed to its metastable higher homologue Pd8 tetrafacial barrel (2), forming stable host-guest complexes (C60)3⊂2 and (C70)2⊂2, respectively. Again, encapsulated fullerenes could be extracted from the cavity of 2 using 1,2-dichlorobenzene, leading to its facile conversion to the parent trifacial barrel 1. Such reversible structural interconversion between an adaptable molecular barrel and its guest stabilized higher homologue is an uncommon observation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda