Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Biol Chem ; 278(13): 11320-30, 2003 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-12493753

RESUMEN

Three-dimensional models of the catalytic domains of Nudel (Ndl), Gastrulation Defective (Gd), Snake (Snk), and Easter (Ea), and their complexes with substrate suggest a possible organization of the enzyme cascade controlling the dorsoventral fate of the fruit fly embryo. The models predict that Gd activates Snk, which in turn activates Ea. Gd can be activated either autoproteolytically or by Ndl. The three-dimensional models of each enzyme-substrate complex in the cascade rationalize existing mutagenesis data and the associated phenotypes. The models also predict unanticipated features like a Ca(2+) binding site in Ea and a Na(+) binding site in Ndl and Gd. These binding sites are likely to play a crucial role in vivo as suggested by mutant enzymes introduced into embryos as mRNAs. The mutations in Gd that eliminate Na(+) binding cause an apparent increase in activity, whereas mutations in Ea that abrogate Ca(2+) binding result in complete loss of activity. A mutation in Ea predicted to introduce Na(+) binding results in apparently increased activity with ventralization of the embryo, an effect not observed with wild-type Ea mRNA.


Asunto(s)
Tipificación del Cuerpo/fisiología , Proteínas de Drosophila/fisiología , Drosophila melanogaster/embriología , Serina Endopeptidasas/fisiología , Factores de Transcripción/fisiología , Animales , Sitios de Unión , Catálisis , Cationes , Proteínas de Drosophila/química , Drosophila melanogaster/enzimología , Modelos Moleculares , Mutación , Conformación Proteica , ARN Mensajero/genética , Serina Endopeptidasas/química , Especificidad por Sustrato , Factores de Transcripción/química
2.
Proc Natl Acad Sci U S A ; 100(24): 13785-90, 2003 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-14612565

RESUMEN

Monovalent-cation-activated enzymes are abundantly represented in plants and in the animal world. Most of these enzymes are specifically activated by K+, whereas a few of them show preferential activation by Na+. The monovalent cation specificity of these enzymes remains elusive in molecular terms and has not been reengineered by site-directed mutagenesis. Here we demonstrate that thrombin, a Na+-activated allosteric enzyme involved in vertebrate blood clotting, can be converted into a K+-specific enzyme by redesigning a loop that shapes the entrance to the cation-binding site. The conversion, however, does not result into a K+-activated enzyme.


Asunto(s)
Ingeniería de Proteínas/métodos , Trombina/química , Trombina/metabolismo , Sitios de Unión , Cationes Monovalentes , Humanos , Técnicas In Vitro , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Potasio/metabolismo , Sodio/metabolismo , Especificidad por Sustrato , Termodinámica , Trombina/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda