Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Biochemistry ; 59(48): 4517-4522, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33249825

RESUMEN

An in vitro effect of (+)MK-801 (dizocilpine), an inhibitor of the glutamate/NMDA and nicotinic acetylcholine receptors, on the Aß[1-42] and Aß[1-40] peptides is described and compared to that of memantine. Memantine has been approved by the U.S. Food and Drug Administration for the treatment of mild-moderate Alzheimer's disease. Both compounds accelerated the formation of a ß-sheet structure by Aß[1-42], (+)MK-801 more rapidly than memantine, as observed in a thioflavin T fluorescence assay. The acceleration was followed by a decrease in the fluorescence signal that was not observed when the ligand was absent. Nuclear magnetic resonance spectra of the soluble peptides in the presence and absence of (+)MK-801 demonstrated that the monomeric form did not bind (+)MK-801 and that in the presence of (+)MK-801 the concentration of the monomeric form progressively decreased. Small angle X-ray scattering confirmed that the presence of (+)MK-801 resulted in a more rapid and characteristic transition to an insoluble form. These results suggest that (+)MK-801 and memantine accelerate the transition of Aß[1-42] and Aß[1-40] to ThT-negative insoluble forms.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/efectos de los fármacos , Maleato de Dizocilpina/farmacología , Memantina/farmacología , Benzotiazoles , Antagonistas de Aminoácidos Excitadores/farmacología , Colorantes Fluorescentes , Humanos , Técnicas In Vitro , Resonancia Magnética Nuclear Biomolecular , Fragmentos de Péptidos/química , Fragmentos de Péptidos/efectos de los fármacos , Conformación Proteica en Lámina beta/efectos de los fármacos , Espectrometría de Fluorescencia
2.
Nature ; 483(7389): 336-40, 2012 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-22398450

RESUMEN

Cells are organized on length scales ranging from ångström to micrometres. However, the mechanisms by which ångström-scale molecular properties are translated to micrometre-scale macroscopic properties are not well understood. Here we show that interactions between diverse synthetic, multivalent macromolecules (including multi-domain proteins and RNA) produce sharp liquid-liquid-demixing phase separations, generating micrometre-sized liquid droplets in aqueous solution. This macroscopic transition corresponds to a molecular transition between small complexes and large, dynamic supramolecular polymers. The concentrations needed for phase transition are directly related to the valency of the interacting species. In the case of the actin-regulatory protein called neural Wiskott-Aldrich syndrome protein (N-WASP) interacting with its established biological partners NCK and phosphorylated nephrin, the phase transition corresponds to a sharp increase in activity towards an actin nucleation factor, the Arp2/3 complex. The transition is governed by the degree of phosphorylation of nephrin, explaining how this property of the system can be controlled to regulatory effect by kinases. The widespread occurrence of multivalent systems suggests that phase transitions may be used to spatially organize and biochemically regulate information throughout biology.


Asunto(s)
Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Transición de Fase , Proteínas/química , Proteínas/metabolismo , Transducción de Señal , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Biopolímeros/química , Biopolímeros/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Células HeLa , Humanos , Ligandos , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , Fosforilación , Dominios Proteicos Ricos en Prolina , Estructura Cuaternaria de Proteína , Proteína Neuronal del Síndrome de Wiskott-Aldrich/química , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Dominios Homologos src
3.
Proc Natl Acad Sci U S A ; 112(47): E6426-35, 2015 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-26553976

RESUMEN

The organization of membranes, the cytosol, and the nucleus of eukaryotic cells can be controlled through phase separation of lipids, proteins, and nucleic acids. Collective interactions of multivalent molecules mediated by modular binding domains can induce gelation and phase separation in several cytosolic and membrane-associated systems. The adaptor protein Nck has three SRC-homology 3 (SH3) domains that bind multiple proline-rich segments in the actin regulatory protein neuronal Wiskott-Aldrich syndrome protein (N-WASP) and an SH2 domain that binds to multiple phosphotyrosine sites in the adhesion protein nephrin, leading to phase separation. Here, we show that the 50-residue linker between the first two SH3 domains of Nck enhances phase separation of Nck/N-WASP/nephrin assemblies. Two linear motifs within this element, as well as its overall positively charged character, are important for this effect. The linker increases the driving force for self-assembly of Nck, likely through weak interactions with the second SH3 domain, and this effect appears to promote phase separation. The linker sequence is highly conserved, suggesting that the sequence determinants of the driving forces for phase separation may be generally important to Nck functions. Our studies demonstrate that linker regions between modular domains can contribute to the driving forces for self-assembly and phase separation of multivalent proteins.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia Conservada , Proteínas Oncogénicas/química , Proteínas Oncogénicas/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Datos de Secuencia Molecular , Prolina/química , Unión Proteica , Estructura Terciaria de Proteína , Relación Estructura-Actividad , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo
4.
Elife ; 112022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35770973

RESUMEN

Nedd4/Rsp5 family E3 ligases mediate numerous cellular processes, many of which require the E3 ligase to interact with PY motif containing adaptor proteins. Several arrestin-related trafficking adaptors (ARTs) of Rsp5 were self-ubiquitinated for activation, but the regulation mechanism remains elusive. Remarkably, we demonstrate that Art1, Art4, and Art5 undergo K63-linked di-ubiquitination by Rsp5. This modification enhances the plasma membrane recruitment of Rsp5 by Art1 or Art5 upon substrate induction, required for cargo protein ubiquitination. In agreement with these observations, we find that di-ubiquitin strengthens the interaction between the pombe orthologs of Rsp5 and Art1, Pub1, and Any1. Furthermore, we discover that the homologous to E6AP C-terminus (HECT) domain exosite protects the K63-linked di-ubiquitin on the adaptors from cleavage by the deubiquitination enzyme Ubp2. Together, our study uncovers a novel ubiquitination modification implemented by Rsp5 adaptor proteins, underscoring the regulatory mechanism of how adaptor proteins control the recruitment, and activity of Rsp5 for the turnover of membrane proteins.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Ubiquitina , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
5.
Sci Adv ; 8(13): eabm5149, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35363519

RESUMEN

The general mechanisms by which ESCRTs (Endosomal Sorting Complexes Required for Transport) are specifically recruited to various membranes, and how ESCRT subunits are spatially organized remain central questions in cell biology. At the endosome and lysosomes, ubiquitination of membrane proteins triggers ESCRT-mediated substrate recognition and degradation. Using the yeast lysosome/vacuole, we define the principles by which substrate engagement by ESCRTs occurs at this organelle. We find that multivalent interactions between ESCRT-0 and polyubiquitin are critical for substrate recognition at yeast vacuoles, with a lower-valency requirement for cargo engagement at endosomes. Direct recruitment of ESCRT-0 induces dynamic foci on the vacuole membrane and forms fluid condensates in vitro with polyubiquitin. We propose that self-assembly of early ESCRTs induces condensation, an initial step in ESCRT assembly/nucleation at membranes. This property can be tuned specifically at various organelles by modulating the number of binding interactions.

6.
Elife ; 102021 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-34028356

RESUMEN

ESCRT-III polymerization is required for all endosomal sorting complex required for transport (ESCRT)-dependent events in the cell. However, the relative contributions of the eight ESCRT-III subunits differ between each process. The minimal features of ESCRT-III proteins necessary for function and the role for the multiple ESCRT-III subunits remain unclear. To identify essential features of ESCRT-III subunits, we previously studied the polymerization mechanisms of two ESCRT-III subunits Snf7 and Vps24, identifying the association of the helix-4 region of Snf7 with the helix-1 region of Vps24 (Banjade et al., 2019a). Here, we find that mutations in the helix-1 region of another ESCRT-III subunit Vps2 can functionally replace Vps24 in Saccharomyces cerevisiae. Engineering and genetic selections revealed the required features of both subunits. Our data allow us to propose three minimal features required for ESCRT-III function - spiral formation, lateral association of the spirals through heteropolymerization, and binding to the AAA + ATPase Vps4 for dynamic remodeling.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Regulación Fúngica de la Expresión Génica , Mutación , Unión Proteica , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Relación Estructura-Actividad
7.
Science ; 374(6573): eabm4805, 2021 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-34762488

RESUMEN

Protein-protein interactions play critical roles in biology, but the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions not yet identified. We take advantage of advances in proteome-wide amino acid coevolution analysis and deep-learning­based structure modeling to systematically identify and build accurate models of core eukaryotic protein complexes within the Saccharomyces cerevisiae proteome. We use a combination of RoseTTAFold and AlphaFold to screen through paired multiple sequence alignments for 8.3 million pairs of yeast proteins, identify 1505 likely to interact, and build structure models for 106 previously unidentified assemblies and 806 that have not been structurally characterized. These complexes, which have as many as five subunits, play roles in almost all key processes in eukaryotic cells and provide broad insights into biological function.


Asunto(s)
Aprendizaje Profundo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Mapeo de Interacción de Proteínas , Proteoma/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Aciltransferasas/química , Aciltransferasas/metabolismo , Segregación Cromosómica , Biología Computacional , Simulación por Computador , Reparación del ADN , Evolución Molecular , Recombinación Homóloga , Ligasas/química , Ligasas/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Biosíntesis de Proteínas , Conformación Proteica , Mapas de Interacción de Proteínas , Proteoma/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/química , Ubiquitina/química , Ubiquitina/metabolismo
8.
Structure ; 16(3): 460-7, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18334220

RESUMEN

HER4/ErbB4 is a ubiquitously expressed member of the EGF/ErbB family of receptor tyrosine kinases that is essential for normal development of the heart, nervous system, and mammary gland. We report here crystal structures of the ErbB4 kinase domain in active and lapatinib-inhibited forms. Active ErbB4 kinase adopts an asymmetric dimer conformation essentially identical to that observed to be important for activation of the EGF receptor/ErbB1 kinase. Mutagenesis studies of intact ErbB4 in Ba/F3 cells confirm the importance of this asymmetric dimer for activation of intact ErbB4. Lapatinib binds to an inactive form of the ErbB4 kinase in a mode equivalent to its interaction with the EGF receptor. All ErbB4 residues contacted by lapatinib are conserved in the EGF receptor and HER2/ErbB2, which lapatinib also targets. These results demonstrate that key elements of kinase activation and inhibition are conserved among ErbB family members.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Animales , Células Cultivadas , Secuencia Conservada , Activación Enzimática/efectos de los fármacos , Receptores ErbB/química , Humanos , Lapatinib , Modelos Biológicos , Modelos Moleculares , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Quinazolinas/química , Quinazolinas/metabolismo , Quinazolinas/farmacología , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Receptor ErbB-4 , Spodoptera
9.
Methods Mol Biol ; 1998: 105-116, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31250297

RESUMEN

Budding yeast Saccharomyces cerevisiae is an ideal model organism to study membrane trafficking pathways. The ESCRT (endosomal sorting complexes required for transport) pathway was first identified in this organism. Upon recognition of endocytosed ubiquitinated membrane proteins at endosomes, ESCRTs assemble at these organelles to catalyze the biogenesis of multivesicular bodies (MVBs). Formation of MVBs leads to the trafficking of these membrane proteins to vacuoles for degradation. Here, we describe genetic and biochemical approaches to study ESCRT function. We outline in vivo endocytosis assays using two model cargoes in Saccharomyces cerevisiae and also describe an in vitro approach to analyze ESCRT-III polymerization on lipid monolayers.


Asunto(s)
Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cuerpos Multivesiculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sistemas de Transporte de Aminoácidos Básicos/genética , Endocitosis/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Complejos de Clasificación Endosomal Requeridos para el Transporte/aislamiento & purificación , Proteínas Fluorescentes Verdes/química , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Membranas Artificiales , Microscopía Electrónica/métodos , Microscopía Fluorescente/métodos , Mutación , Multimerización de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación , Vacuolas/metabolismo
10.
Elife ; 82019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31246173

RESUMEN

Self-assembly of ESCRT-III complex is a critical step in all ESCRT-dependent events. ESCRT-III hetero-polymers adopt variable architectures, but the mechanisms of inter-subunit recognition in these hetero-polymers to create flexible architectures remain unclear. We demonstrate in vivo and in vitro that the Saccharomyces cerevisiae ESCRT-III subunit Snf7 uses a conserved acidic helix to recruit its partner Vps24. Charge-inversion mutations in this helix inhibit Snf7-Vps24 lateral interactions in the polymer, while rebalancing the charges rescues the functional defects. These data suggest that Snf7-Vps24 assembly occurs through electrostatic interactions on one surface, rather than through residue-to-residue specificity. We propose a model in which these cooperative electrostatic interactions in the polymer propagate to allow for specific inter-subunit recognition, while sliding of laterally interacting polymers enable changes in architecture at distinct stages of vesicle biogenesis. Our data suggest a mechanism by which interaction specificity and polymer flexibility can be coupled in membrane-remodeling heteropolymeric assemblies.


Asunto(s)
Biopolímeros/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Electricidad Estática , Secuencia de Aminoácidos , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Mutación/genética , Unión Proteica , Estructura Secundaria de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Supresión Genética
11.
Elife ; 52016 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-27074665

RESUMEN

The endosomal sorting complexes required for transport (ESCRT) pathway facilitates multiple fundamental membrane remodeling events. Previously, we determined X-ray crystal structures of ESCRT-III subunit Snf7, the yeast CHMP4 ortholog, in its active and polymeric state (Tang et al., 2015). However, how ESCRT-III activation is coordinated by the upstream ESCRT components at endosomes remains unclear. Here, we provide a molecular explanation for the functional divergence of structurally similar ESCRT-III subunits. We characterize novel mutations in ESCRT-III Snf7 that trigger activation, and identify a novel role of Bro1, the yeast ALIX ortholog, in Snf7 assembly. We show that upstream ESCRTs regulate Snf7 activation at both its N-terminal core domain and the C-terminus α6 helix through two parallel ubiquitin-dependent pathways: the ESCRT-I-ESCRT-II-Vps20 pathway and the ESCRT-0-Bro1 pathway. We therefore provide an enhanced understanding for the activation of the spatially unique ESCRT-III-mediated membrane remodeling.


Asunto(s)
Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Regulación Fúngica de la Expresión Génica , Cuerpos Multivesiculares/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Cuerpos Multivesiculares/genética , Cuerpos Multivesiculares/ultraestructura , Mutación , Dominios Proteicos , Estructura Secundaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo , Ubiquitinación
12.
Science ; 352(6285): 595-9, 2016 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-27056844

RESUMEN

Activation of various cell surface receptors triggers the reorganization of downstream signaling molecules into micrometer- or submicrometer-sized clusters. However, the functional consequences of such clustering have been unclear. We biochemically reconstituted a 12-component signaling pathway on model membranes, beginning with T cell receptor (TCR) activation and ending with actin assembly. When TCR phosphorylation was triggered, downstream signaling proteins spontaneously separated into liquid-like clusters that promoted signaling outputs both in vitro and in human Jurkat T cells. Reconstituted clusters were enriched in kinases but excluded phosphatases and enhanced actin filament assembly by recruiting and organizing actin regulators. These results demonstrate that protein phase separation can create a distinct physical and biochemical compartment that facilitates signaling.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Antígenos de Linfocitos T/agonistas , Linfocitos T/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Células Jurkat , Quinasas de Proteína Quinasa Activadas por Mitógenos , Fosforilación , Polimerizacion , Transducción de Señal
13.
Elife ; 32014 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-25321392

RESUMEN

Clustering of proteins into micrometer-sized structures at membranes is observed in many signaling pathways. Most models of clustering are specific to particular systems, and relationships between physical properties of the clusters and their molecular components are not well understood. We report biochemical reconstitution on supported lipid bilayers of protein clusters containing the adhesion receptor Nephrin and its cytoplasmic partners, Nck and N-WASP. With Nephrin attached to the bilayer, multivalent interactions enable these proteins to polymerize on the membrane surface and undergo two-dimensional phase separation, producing micrometer-sized clusters. Dynamics and thermodynamics of the clusters are modulated by the valencies and affinities of the interacting species. In the presence of the Arp2/3 complex, the clusters assemble actin filaments, suggesting that clustering of regulatory factors could promote local actin assembly at membranes. Interactions between multivalent proteins could be a general mechanism for cytoplasmic adaptor proteins to organize membrane receptors into micrometer-scale signaling zones.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Oncogénicas/metabolismo , Transición de Fase , Receptores de Superficie Celular/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Análisis por Conglomerados , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Proteínas Oncogénicas/química , Péptidos/metabolismo , Polimerizacion , Unión Proteica , Ratas , Proteína Neuronal del Síndrome de Wiskott-Aldrich/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda