Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 227
Filtrar
1.
EMBO J ; 41(2): e106837, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34873731

RESUMEN

Mitochondria depend on the import of phospholipid precursors for the biosynthesis of phosphatidylethanolamine (PE) and cardiolipin, yet the mechanism of their transport remains elusive. A dynamic lipidomics approach revealed that mitochondria preferentially import di-unsaturated phosphatidylserine (PS) for subsequent conversion to PE by the mitochondrial PS decarboxylase Psd1p. Several protein complexes tethering mitochondria to the endomembrane system have been implicated in lipid transport in yeast, including the endoplasmic reticulum (ER)-mitochondrial encounter structure (ERMES), ER-membrane complex (EMC), and the vacuole and mitochondria patch (vCLAMP). By limiting the availability of unsaturated phospholipids, we created conditions to investigate the mechanism of lipid transfer and the contributions of the tethering complexes in vivo. Under these conditions, inactivation of ERMES components or of the vCLAMP component Vps39p exacerbated accumulation of saturated lipid acyl chains, indicating that ERMES and Vps39p contribute to the mitochondrial sink for unsaturated acyl chains by mediating transfer of di-unsaturated phospholipids. These results support the concept that intermembrane lipid flow is rate-limited by molecular species-dependent lipid efflux from the donor membrane and driven by the lipid species' concentration gradient between donor and acceptor membrane.


Asunto(s)
Mitocondrias/metabolismo , Fosfolípidos/metabolismo , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Transporte Biológico , Carboxiliasas/genética , Carboxiliasas/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(30): e2216329120, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37478163

RESUMEN

To accomplish concerted physiological reactions, nature has diversified functions of a single hormone at at least two primary levels: 1) Different receptors recognize the same hormone, and 2) different cellular effectors couple to the same hormone-receptor pair [R.P. Xiao, Sci STKE 2001, re15 (2001); L. Hein, J. D. Altman, B.K. Kobilka, Nature 402, 181-184 (1999); Y. Daaka, L. M. Luttrell, R. J. Lefkowitz, Nature 390, 88-91 (1997)]. Not only these questions lie in the heart of hormone actions and receptor signaling but also dissecting mechanisms underlying these questions could offer therapeutic routes for refractory diseases, such as kidney injury (KI) or X-linked nephrogenic diabetes insipidus (NDI). Here, we identified that Gs-biased signaling, but not Gi activation downstream of EP4, showed beneficial effects for both KI and NDI treatments. Notably, by solving Cryo-electron microscope (cryo-EM) structures of EP3-Gi, EP4-Gs, and EP4-Gi in complex with endogenous prostaglandin E2 (PGE2)or two synthetic agonists and comparing with PGE2-EP2-Gs structures, we found that unique primary sequences of prostaglandin E2 receptor (EP) receptors and distinct conformational states of the EP4 ligand pocket govern the Gs/Gi transducer coupling selectivity through different structural propagation paths, especially via TM6 and TM7, to generate selective cytoplasmic structural features. In particular, the orientation of the PGE2 ω-chain and two distinct pockets encompassing agonist L902688 of EP4 were differentiated by their Gs/Gi coupling ability. Further, we identified common and distinct features of cytoplasmic side of EP receptors for Gs/Gi coupling and provide a structural basis for selective and biased agonist design of EP4 with therapeutic potential.


Asunto(s)
Dinoprostona , Transducción de Señal , Dinoprostona/metabolismo , Transducción de Señal/fisiología , Receptores de Prostaglandina/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Hormonas , Subtipo EP4 de Receptores de Prostaglandina E/metabolismo , Subtipo EP2 de Receptores de Prostaglandina E/metabolismo , Subtipo EP3 de Receptores de Prostaglandina E/metabolismo
3.
EMBO J ; 40(20): e107966, 2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34520050

RESUMEN

Phosphatidylcholine (PC) is an abundant membrane lipid component in most eukaryotes, including yeast, and has been assigned multiple functions in addition to acting as building block of the lipid bilayer. Here, by isolating S. cerevisiae suppressor mutants that exhibit robust growth in the absence of PC, we show that PC essentiality is subject to cellular evolvability in yeast. The requirement for PC is suppressed by monosomy of chromosome XV or by a point mutation in the ACC1 gene encoding acetyl-CoA carboxylase. Although these two genetic adaptations rewire lipid biosynthesis in different ways, both decrease Acc1 activity, thereby reducing average acyl chain length. Consistently, soraphen A, a specific inhibitor of Acc1, rescues a yeast mutant with deficient PC synthesis. In the aneuploid suppressor, feedback inhibition of Acc1 through acyl-CoA produced by fatty acid synthase (FAS) results from upregulation of lipid synthesis. The results show that budding yeast regulates acyl chain length by fine-tuning the activities of Acc1 and FAS and indicate that PC evolved by benefitting the maintenance of membrane fluidity.


Asunto(s)
Acetil-CoA Carboxilasa/genética , Ácido Graso Sintasas/genética , Membrana Dobles de Lípidos/metabolismo , Lípidos de la Membrana/metabolismo , Fosfatidilcolinas/deficiencia , Saccharomyces cerevisiae/metabolismo , Acetil-CoA Carboxilasa/metabolismo , Cromosomas Fúngicos , Ácido Graso Sintasas/metabolismo , Retroalimentación Fisiológica , Regulación Fúngica de la Expresión Génica , Membrana Dobles de Lípidos/química , Metabolismo de los Lípidos/genética , Fluidez de la Membrana , Lípidos de la Membrana/química , Mutación Puntual , Saccharomyces cerevisiae/genética
4.
J Am Chem Soc ; 146(18): 12723-12733, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38654452

RESUMEN

Enfumafungin-type antibiotics, represented by enfumafungin and fuscoatroside, belong to a distinct group of triterpenoids derived from fungi. These compounds exhibit significant antifungal properties with ibrexafungerp, a semisynthetic derivative of enfumafungin, recently gaining FDA's approval as the first oral antifungal drug for treating invasive vulvar candidiasis. Enfumafungin-type antibiotics possess a cleaved E-ring with an oxidized carboxyl group and a reduced methyl group at the break site, suggesting unprecedented C-C bond cleavage chemistry involved in their biosynthesis. Here, we show that a 4-gene (fsoA, fsoD, fsoE, fsoF) biosynthetic gene cluster is sufficient to yield fuscoatroside by heterologous expression in Aspergillus oryzae. Notably, FsoA is an unheard-of terpene cyclase-glycosyltransferase fusion enzyme, affording a triterpene glycoside product that relies on enzymatic fusion. FsoE is a P450 enzyme that catalyzes successive oxidation reactions at C19 to facilitate a C-C bond cleavage, producing an oxidized carboxyl group and a reduced methyl group that have never been observed in known P450 enzymes. Our study thus sets the important foundation for the manufacture of enfumafungin-type antibiotics using biosynthetic approaches.


Asunto(s)
Antifúngicos , Antifúngicos/química , Antifúngicos/farmacología , Antifúngicos/metabolismo , Aspergillus oryzae/enzimología , Aspergillus oryzae/metabolismo , Familia de Multigenes , Triterpenos/química , Triterpenos/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo
5.
BMC Cancer ; 24(1): 758, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38914961

RESUMEN

BACKGROUND: Colon cancer (CC) is a malignancy associated with significant morbidity and mortality within the gastrointestinal tract. Recurrence and metastasis are the main factors affecting the prognosis of CC patients undergoing radical surgery; consequently, we attempted to determine the impact of immunity-related genes. RESULT: We constructed a CC risk model based on ZG16, MPC1, RBM47, SMOX, CPM and DNASE1L3. Consistently, we found that a significant association was found between the expression of most characteristic genes and tumor mutation burden (TMB), microsatellite instability (MSI) and neoantigen (NEO). Additionally, a notable decrease in RBM47 expression was observed in CC tissues compared with that in normal tissues. Moreover, RBM47 expression was correlated with clinicopathological characteristics and improved disease-free survival (DFS) and overall survival (OS) among patients with CC. Lastly, immunohistochemistry and co-immunofluorescence staining revealed a clear positive correlation between RBM47 and CXCL13 in mature tertiary lymphoid structures (TLS) region. CONCLUSION: We conclude that RBM47 was identified as a prognostic-related gene, which was of great significance to the prognosis evaluation of patients with CC and was correlated with CXCL13 in the TLS region.


Asunto(s)
Biomarcadores de Tumor , Neoplasias del Colon , Inestabilidad de Microsatélites , Humanos , Neoplasias del Colon/genética , Neoplasias del Colon/inmunología , Neoplasias del Colon/patología , Neoplasias del Colon/mortalidad , Pronóstico , Masculino , Femenino , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Persona de Mediana Edad , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Anciano , Mutación , Regulación Neoplásica de la Expresión Génica , Supervivencia sin Enfermedad
6.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 331-344, 2024 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-38327187

RESUMEN

Atherosclerosis (AS), the main contributor to acute cardiovascular events, such as myocardial infarction and ischemic stroke, is characterized by necrotic core formation and plaque instability induced by cell death. The mechanisms of cell death in AS have recently been identified and elucidated. Ferroptosis, a novel iron-dependent form of cell death, has been proven to participate in atherosclerotic progression by increasing endothelial reactive oxygen species (ROS) levels and lipid peroxidation. Furthermore, accumulated intracellular iron activates various signaling pathways or risk factors for AS, such as abnormal lipid metabolism, oxidative stress, and inflammation, which can eventually lead to the disordered function of macrophages, vascular smooth muscle cells, and vascular endothelial cells. However, the molecular pathways through which ferroptosis affects AS development and progression are not entirely understood. This review systematically summarizes the interactions between AS and ferroptosis and provides a feasible approach for inhibiting AS progression from the perspective of ferroptosis.


Asunto(s)
Aterosclerosis , Ferroptosis , Accidente Cerebrovascular Isquémico , Humanos , Células Endoteliales , Hierro , Especies Reactivas de Oxígeno , Peroxidación de Lípido
7.
J Asian Nat Prod Res ; 26(7): 824-832, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38509703

RESUMEN

Thrombosis plays an important role in the occurrence and development of cardiovascular and cerebrovascular diseases that contribute to high mortality and morbidity in patients. L-(-)-Quebrachitol (QCT), a natural product, was first isolated from quebracho bark. It can inhibit PAF receptor and decrease gastric damage induced by indomethacin, as a drug against platelet aggregation. Here, five QCT derivatives were synthesized and investigated for their inhibitory effects on platelet aggregation. Among them, compound 3a showed anticoagulant effects comparable to aspirin, while compound 4b showed dose-independent inhibitory activities in rats that were stronger than aspirin.


Asunto(s)
Inhibidores de Agregación Plaquetaria , Agregación Plaquetaria , Animales , Agregación Plaquetaria/efectos de los fármacos , Ratas , Estructura Molecular , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/síntesis química , Inhibidores de Agregación Plaquetaria/química , Aspirina/farmacología , Anticoagulantes/farmacología , Anticoagulantes/química , Anticoagulantes/síntesis química , Corteza de la Planta/química , Masculino
8.
Artículo en Inglés | MEDLINE | ID: mdl-38062310

RESUMEN

PURPOSE: Complete and rapid recanalization of blood flow by percutaneous coronary intervention (PCI) is the most effective intervention for patients with ST-segment elevation myocardial infarction (STEMI). However, myocardial ischemia/reperfusion (I/R) injury leads to microvascular obstruction (MVO), limiting its efficacy. Colchicine can reduce myocardial I/R injury, but its effect on MVO is unclear. Hence, this study aimed to assess the role and mechanism of colchicine on MVO. METHODS: Clinical data on STEMI patients with PCI were collected and risk factors related to MVO were analyzed. The rat myocardial I/R model was established to evaluate the MVO by thioflavin S staining. The myocardial I/R model of mice was treated with PBS or colchicine at the reperfusion. The effect of colchicine on cardiomyocyte apoptosis after I/R was evaluated by TUNEL and expression of cleaved caspase-3. ROS levels were detected in H9c2 cells to evaluate the colchicine effect on myocardial oxidative stress. Moreover, the mechanism through which colchicine attenuated MVO was examined using flow cytometry, WB, ELISA, immunohistochemistry, bioinformatics analysis, and immunofluorescence. RESULTS: Multivariate analysis showed that elevated neutrophils were associated with extensive MVO. Colchicine could attenuate MVO and reduce neutrophil recruitment and NETs formation after myocardial I/R. In addition, colchicine inhibited cardiomyocyte apoptosis in vivo and ROS levels in vitro. Furthermore, colchicine inhibited neutrophil proliferation in the bone marrow (BM) by inhibiting the S100A8/A9 inflammatory signaling pathway. CONCLUSIONS: Colchicine attenuated MVO after myocardial I/R injury by inhibiting the proliferation of neutrophils in BM through the neutrophil-derived S100A8/A9 inflammatory signaling pathway.

9.
BMC Cardiovasc Disord ; 23(1): 383, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37525099

RESUMEN

OBJECTIVE: The study aimed to evaluate the prognostic value of relative wall thickness (RWT) in the patients with ST-segment elevation myocardial infarction (STEMI). METHODS: A total of 866 patients with STEMI admitted in Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School from November 2010 to December 2018 were enrolled in the current study retrospectively. Three methods were used to calculate RWT: RWTPW, RWTIVS+PW and RWTIVS. The included patients were divided according to the median values of RWTPW, RWTIVS+PW, and RWTIVS, respectively. Survival analysis were performed with Kaplan-Meier plot and multivariate Cox proportional hazard model was established to evaluate the adjusted hazard ratio of the three kinds of RWT for all cause death, cardiac death and MACE (major adverse cardiac death). RESULTS: There was no significance for the survival analysis between the low and high groups of RWTPW, RWTIVS+PW and RWTIVS at 30 days and 12 months. Nonetheless, the cumulative incidence of all cause death and cardiac death in the low group of RWTPW and RWTIVS+PW was higher than those in the high group at 60 months. The cumulative incidence of MACE in the low group of RWTPW was higher than the high group at 60 months. Multivariate Cox regression model showed that RWTPW were inversely associated with long-term cardiac death and MACE in STEMI patients. In the subgroup analysis, three calculations of RWT had no predictive value for the patients with anterior myocardial infarction. By contrast, RWTPW was the most stable independent predictor for the long-term outcomes of the patients with non-anterior myocardial infarction. CONCLUSION: RWTPW, RWTIVS+PW and RWTIVS had no predictive value for the long-term clinical outcomes of patients with anterior myocardial infarction, whereas RWTPW was a reliable predictor for all cause death, cardiac death and MACE in patients with non-anterior myocardial infarction.


Asunto(s)
Infarto del Miocardio , Intervención Coronaria Percutánea , Infarto del Miocardio con Elevación del ST , Humanos , Infarto del Miocardio con Elevación del ST/diagnóstico por imagen , Infarto del Miocardio con Elevación del ST/terapia , Estudios Retrospectivos , Pronóstico , Muerte , Resultado del Tratamiento
10.
Acta Pharmacol Sin ; 44(2): 406-420, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35906293

RESUMEN

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited kidney disease. Cyst development in ADPKD involves abnormal epithelial cell proliferation, which is affected by the primary cilia-mediated signal transduction in the epithelial cells. Thus, primary cilium has been considered as a therapeutic target for ADPKD. Since ADPKD exhibits many pathological features similar to solid tumors, we investigated whether targeting primary cilia using anti-tumor agents could alleviate the development of ADPKD. Twenty-four natural compounds with anti-tumor activity were screened in MDCK cyst model, and 1-Indanone displayed notable inhibition on renal cyst growth without cytotoxicity. This compound also inhibited cyst development in embryonic kidney cyst model. In neonatal kidney-specific Pkd1 knockout mice, 1-Indanone remarkably slowed down kidney enlargement and cyst expansion. Furthermore, we demonstrated that 1-Indanone inhibited the abnormal elongation of cystic epithelial cilia by promoting tubulin polymerization and significantly down-regulating expression of anterograde transport motor protein KIF3A and IFT88. Moreover, we found that 1-Indanone significantly down-regulated ciliary coordinated Wnt/ß-catenin, Hedgehog signaling pathways. These results demonstrate that 1-Indanone inhibits cystic cell proliferation by reducing abnormally prolonged cilia length in cystic epithelial cells, suggesting that 1-Indanone may hold therapeutic potential to retard cyst development in ADPKD.


Asunto(s)
Quistes , Riñón Poliquístico Autosómico Dominante , Ratones , Animales , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Riñón Poliquístico Autosómico Dominante/metabolismo , Riñón Poliquístico Autosómico Dominante/patología , Cilios , Tubulina (Proteína)/metabolismo , Proteínas Hedgehog/metabolismo , Riñón/patología , Ratones Noqueados , Quistes/metabolismo , Quistes/patología , Canales Catiónicos TRPP/metabolismo , Células Epiteliales/metabolismo
11.
J Environ Manage ; 345: 118458, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37385196

RESUMEN

Stover-covered no-tillage (NT) is of great significance to the rational utilization of stover resources and improvement of cultivated land quality, and also has a profound impact on ensuring groundwater, food and ecosystem security. However, the effects of tillage patterns and stover mulching on soil nitrogen turnover remain elusive. Based on the long-term conservation tillage field experiment in the mollisol area of Northeast China since 2007, the shotgun metagenomic sequencing of soils and microcosm incubation were combined with physical and chemical analyses, alkyne inhibition analysis to elucidate the regulatory mechanisms of NT and stover mulching on the farmland soil nitrogen emissions and microbial nitrogen cycling genes. Compared with conventional tillage (CT), NT stover mulching significantly reduced the emission of N2O instead of CO2, especially when 33% mulching was adopted, and correspondingly the nitrate nitrogen of NT33 was higher than that of other mulching amounts. The stover mulching was associated with higher total nitrogen, soil organic carbon and pH. The abundance of AOB (ammonia-oxidizing bacteria)-amoA (ammonia monooxygenase subunit A) was substantially increased by stover mulching, while the abundance of denitrification genes was reduced in most cases. Under alkyne inhibition, the tillage mode, treatment time, gas condition and interactions between them noticeably influenced the N2O emission and nitrogen transformation. In CT, NT0 (no mulching) and NT100 (full mulching), the relative contribution of AOB to N2O production was markedly higher than that of ammonia oxidizing archaea. Different tillage modes were associated with distinct microbial community composition, albeit NT100 was closer to CT than to NT0. Compared with CT, the co-occurrence network of microbial communities was more complex in NT0 and NT100. Our findings suggest that maintaining a low-quantity stover mulching could regulate soil nitrogen turnover toward proficiently enhancing soil health and regenerative agriculture, and coping with global climate change.


Asunto(s)
Microbiota , Suelo , Suelo/química , Amoníaco/análisis , Carbono/análisis , Agricultura , China , Nitrógeno/análisis , Alquinos/análisis , Microbiología del Suelo , Óxido Nitroso/análisis
12.
Sheng Li Xue Bao ; 75(3): 328-338, 2023 Jun 25.
Artículo en Zh | MEDLINE | ID: mdl-37340642

RESUMEN

The purpose of the present study was to determine the role of inositol 1,4,5-trisphosphate receptor 3 (IP3R3) in renal cyst development in autosomal dominant polycystic kidney disease (ADPKD). 2-aminoethoxy-diphenyl borate (2-APB) and shRNA were used to suppress the expression of IP3R3. The effect of IP3R3 on cyst growth was investigated in Madin-Darby canine kidney (MDCK) cyst model, embryonic kidney cyst model and kidney specific Pkd1 knockout (PKD) mouse model. The underlying mechanism of IP3R3 in promoting renal cyst development was investigated by Western blot and immunofluorescence staining. The results showed that the expression level of IP3R3 was significantly increased in the kidneys of PKD mice. Inhibiting IP3R3 by 2-APB or shRNA significantly retarded cyst expansion in MDCK cyst model and embryonic kidney cyst model. Western blot and immunofluorescence staining results showed that hyperactivated cAMP-PKA signaling pathway in the growth process of ADPKD cyst promoted the expression of IP3R3, which was accompanied by a subcellular redistribution process in which IP3R3 was translocated from endoplasmic reticulum to intercellular junction. The abnormal expression and subcellular localization of IP3R3 further promoted cyst epithelial cell proliferation by activating MAPK and mTOR signaling pathways and accelerating cell cycle. These results suggest that the expression and subcellular distribution of IP3R3 are involved in promoting renal cyst development, which implies IP3R3 as a potential therapeutic target of ADPKD.


Asunto(s)
Quistes , Enfermedades Renales Poliquísticas , Riñón Poliquístico Autosómico Dominante , Animales , Perros , Ratones , Quistes/tratamiento farmacológico , Quistes/genética , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/farmacología , Riñón/metabolismo , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Enfermedades Renales Poliquísticas/genética , Enfermedades Renales Poliquísticas/metabolismo , Riñón Poliquístico Autosómico Dominante/genética , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Células de Riñón Canino Madin Darby
13.
Diabetologia ; 65(10): 1642-1651, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35922613

RESUMEN

AIMS/HYPOTHESIS: Diabetes is associated with an increased risk of cancer. Prostasin is an epithelial sodium channel stimulator that has been associated with suppression of tumours, glucose metabolism and hyperglycaemia-associated tumour pathology. However, the association between prostasin, diabetes and cancer mortality has not been well investigated in humans. We aim to investigate the associations between plasma prostasin and diabetes, and to explore whether prostasin has an effect on cancer mortality risk in individuals with hyperglycaemia. METHODS: Plasma prostasin was measured using samples from the Malmö Diet and Cancer Study Cardiovascular Cohort, and statistical analysis was performed from both sex-specific quartiles and per 1 SD. The cross-sectional association between plasma prostasin and diabetes was first studied in 4658 participants (age 57.5 ± 5.9 years, 39.9% men). After excluding 361 with prevalent diabetes, the associations of prostasin with incident diabetes and cancer mortality risk were assessed using Cox regression analysis. The interactions between prostasin and blood glucose levels as well as other covariates were tested. RESULTS: The adjusted OR for prevalent diabetes in the 4th vs 1st quartile of prostasin concentrations was 1.95 (95% CI 1.39, 2.76) (p for trend <0.0001). During mean follow-up periods of 21.9 ± 7.0 and 23.5 ± 6.1 years, respectively, 702 participants developed diabetes and 651 died from cancer. Prostasin was significantly associated with the incidence of diabetes. The adjusted HR for diabetes in the 4th vs 1st quartile of prostasin concentrations was 1.76 (95% CI 1.41, 2.19) (p for trend <0.0001). Prostasin was also associated with cancer mortality There was a significant interaction between prostasin and fasting blood glucose for cancer mortality risk (p for interaction =0.022), with a stronger association observed in individuals with impaired fasting blood glucose levels at baseline (HR per 1 SD change 1.52; 95% CI 1.07, 2.16; p=0.019). CONCLUSIONS/INTERPRETATION: Plasma prostasin levels are positively associated with diabetes risk and with cancer mortality risk, especially in individuals with high blood glucose levels, which may shed new light on the relationship between diabetes and cancer.


Asunto(s)
Diabetes Mellitus Tipo 2 , Diabetes Mellitus , Agonistas del Canal de Sodio Epitelial , Hiperglucemia , Neoplasias , Glucemia/metabolismo , Estudios Transversales , Diabetes Mellitus/epidemiología , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Neoplasias/epidemiología , Factores de Riesgo , Serina Endopeptidasas
14.
Cardiovasc Diabetol ; 21(1): 88, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35641978

RESUMEN

BACKGROUND: The triglyceride glucose (TyG) index has been proposed as a reliable marker of insulin resistance (IR) and an independent predictor of cardiovascular disease risk. However, its prognostic value in patients with acute decompensated heart failure (ADHF) remains unclear. METHODS: A total of 932 hospitalized patients with ADHF from January 1st, 2018 to February 1st, 2021 were included in this retrospective study. The TyG index was calculated as ln [fasting triglyceride level (mg/dL) × fasting plasma glucose level (mg/dL)/2]. Patients were divided into tertiles according to TyG index values. The primary endpoints were all-cause death, cardiovascular (CV) death and major adverse cardiac and cerebral events (MACCEs) during follow-up. We used multivariate adjusted Cox proportional hazard models and restricted cubic spline analysis to investigate the associations of the TyG index with primary endpoints. RESULTS: During a median follow-up time of 478 days, all-cause death, CV death and MACCEs occurred in 140 (15.0%), 103 (11.1%) and 443 (47.9%) cases, respectively. In multivariate Cox proportional hazard models, the risk of incident primary endpoints was associated with the highest TyG tertile. After adjustment for confounding factors, hazard ratios (HRs) for the highest tertile (TyG index ≥ 9.32) versus the lowest tertile (TyG index < 8.83) were 2.09 (95% confidence interval [CI], 1.23-3.55; p = 0.006) for all-cause death, 2.31 (95% CI, 1.26-4.24; p = 0.007) for CV death and 1.83 (95% CI, 1.18-3.01; p = 0.006) for MACCEs. Restricted cubic spline analysis also showed that the cumulative risk of primary endpoints increased as TyG index increased. When the TyG index was used as a continuous variable, the hazard ratios of the three primary endpoints rapidly increased within the higher range of the TyG index (all cause death, TyG > 9.08; CV death, TyG > 9.46; MACCEs, TyG > 9.87). CONCLUSIONS: The elevated TyG index was independently associated with poor prognosis, and thus would be useful in the risk stratification in patients with ADHF.


Asunto(s)
Glucemia , Insuficiencia Cardíaca , Glucemia/análisis , Glucosa , Insuficiencia Cardíaca/diagnóstico , Humanos , Pronóstico , Estudios Retrospectivos , Triglicéridos
15.
J Nat Prod ; 85(10): 2312-2331, 2022 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-36137221

RESUMEN

Twenty new malabaricane triterpenoids, astramalabaricosides A-T (1-20), were isolated from the roots of Astragalus membranaceus var. mongholicus (Astragali Radix). Their structures were determined by spectroscopic analysis, and the use of the circular dichroism exciton chirality method, quantum chemical calculations, and chemical methods. Malabaricane triterpenoids, an unusual group with the 6-6-5-tricyclic core, are distributed in plants (e.g., Simaroubaceae, Polypodiaceae, and Fabaceae), a marine sponge, and fungi, and their number obtained to date is limited. Compounds 1-20 were characterized as glycosides with a highly oxygenated side chain, and 13-20 were the first cyclic carbonate derivatives among the malabaricane triterpenoids. The stereocluster formed from the continuous hydroxylated chiral carbons in each highly oxygenated side chain and the 6-6-5-tricyclic core system were entirely segregated, and the independent identification of their stereoconfigurations required considerable effort. The migratory inhibitory and antiproliferative activities of 1-20 were evaluated by wound-healing and cell-viability assays, respectively. Most compounds showed significant migratory inhibitory activity, and a preliminary structure-activity relationship was developed. Malabaricane triterpenoids are being reported in the genus Astragalus for the first time.


Asunto(s)
Planta del Astrágalo , Triterpenos , Astragalus propinquus/química , Triterpenos/farmacología , Triterpenos/análisis , Raíces de Plantas/química
16.
Am Heart J ; 234: 81-89, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33421373

RESUMEN

BACKGROUND: Previous studies have proposed growth differentiation factor-15 (GDF-15) as a predictor of adverse cardiovascular outcomes and mortality. The present study aimed to determine if such associations remain after accounting for death as a competing risk, and if GDF-15 provides superior prediction performance than other biomarkers. METHODS: Plasma GDF-15 levels and cardiovascular risk factors were measured in individuals without cardiovascular diseases (n = 4,143, aged 57.4 ± 5.96 years, 38.6 % men) from Malmö Diet and Cancer-Cardiovascular Cohort and were followed up for more than 20 years. Incidence of coronary events, ischemic stroke, cardiovascular mortality, and all-cause mortality was studied in relation to GDF-15 using Cox proportional hazards regression, with adjustment for potential confounders. Confounding from death as competing risk was carefully checked using the Fine and Gray subdistribution hazard model. Predictive capabilities were further evaluated using C-statistics, continuous net reclassification improvement, and integrated discrimination improvement. RESULTS: During follow-up, 424 coronary events, 327 ischemic stroke, 368 cardiovascular deaths, and 1,308 all-cause deaths occurred. After controlling for death from other causes as competing events, only all-cause mortality remained significantly related to GDF-15. The addition of GDF-15 significantly improved prediction for all-cause mortality in addition to the traditional risk factors, high-sensitive C-reactive protein and N-terminal prohormone of brain natriuretic peptide. Only N-terminal prohormone of brain natriuretic peptide improved prediction for CVD mortality. CONCLUSIONS: GDF-15 is a robust biomarker for all-cause mortality but less reliable for coronary event, ischemic stroke or cardiovascular mortality. Competing risk from death is an important consideration when interpreting the results.


Asunto(s)
Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/mortalidad , Factor 15 de Diferenciación de Crecimiento/sangre , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Enfermedades Cardiovasculares/epidemiología , Causas de Muerte , Femenino , Productos del Gen env/sangre , Humanos , Incidencia , Accidente Cerebrovascular Isquémico/epidemiología , Masculino , Persona de Mediana Edad , Fragmentos de Péptidos/sangre , Modelos de Riesgos Proporcionales , Estudios Prospectivos , Factores de Riesgo , Suecia/epidemiología
17.
Acta Pharmacol Sin ; 42(10): 1703-1713, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33927358

RESUMEN

Chemotherapy-related fatigue (CRF) is increasingly being recognized as one of the severe symptoms in patients undergoing chemotherapy, which not only largely reduces the quality of life in patients, but also diminishes their physical and social function. At present, there is no effective drug for preventing and treating CRF. Ganoderic acid (GA), isolated from traditional Chinese medicine Ganoderma lucidum, has shown a variety of pharmacological activities such as anti-tumor, anti-inflammation, immunoregulation, etc. In this study, we investigated whether GA possessed anti-fatigue activity against CRF. CT26 tumor-bearing mice were treated with 5-fluorouracil (5-FU, 30 mg/kg) and GA (50 mg/kg) alone or in combination for 18 days. Peripheral and central fatigue-related behaviors, energy metabolism and inflammatory factors were assessed. We demonstrated that co-administration of GA ameliorated 5-FU-induced peripheral muscle fatigue-like behavior via improving muscle quality and mitochondria function, increasing glycogen content and ATP production, reducing lactic acid content and LDH activity, and inhibiting p-AMPK, IL-6 and TNF-α expression in skeletal muscle. Co-administration of GA also retarded the 5-FU-induced central fatigue-like behavior accompanied by down-regulating the expression of IL-6, iNOS and COX2 in the hippocampus through inhibiting TLR4/Myd88/NF-κB pathway. These results suggest that GA could attenuate 5-FU-induced peripheral and central fatigue in tumor-bearing mice, which provides evidence for GA as a potential drug for treatment of CRF in clinic.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Fatiga Muscular/efectos de los fármacos , Triterpenos/uso terapéutico , Animales , Línea Celular Tumoral , Neoplasias del Colon/patología , Citocinas/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Fluorouracilo/efectos adversos , Fluorouracilo/uso terapéutico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones Endogámicos BALB C , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/patología
18.
Neoplasma ; 68(4): 692-701, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33724862

RESUMEN

Melanoma is a potentially lethal skin cancer with a high death rate. LncRNAs were reported to be implicated in melanoma progression. However, the function and mechanisms of lncRNA RNCR2 in melanoma are little known. In this study, RNCR2, miR-495-3p, and HK2 expression levels were measured in melanoma tissue specimens and cell lines by qPCR. EdU and CCK-8 assays were performed to assess cell proliferation. Enolase activity, ATP level, lactate production, and glucose consumption measurement kits were used to evaluate the glycolysis of tumor cells. Immunofluorescence and western blot were used to detect the expression of epithelial-mesenchymal transition (EMT) and glycolysis-related proteins. Luciferase reporter assay was applied to confirm the target relationships. The role of RNCR2 in tumorigenesis was examined using murine xenograft models. LncRNA RNCR2 was upregulated in melanoma tissues and cell lines. Cell function detection showed that RNCR2 knockdown remarkably inhibited cell proliferation and EMT via glycolysis, as well as reduced the growth of a tumor. Mechanically, RNCR2 was confirmed to bind to miR-495-3p and positively regulated HK2 expression level, and the miR-495-3p level was negatively correlated with RNCR2 or HK2 in melanoma tissues. Further, miR-495-3p downregulation or HK2 upregulation partially reversed RNCR2 knockdown-induced inhibition of melanoma cell growth, EMT, and glycolysis. Collectively, RNCR2 might be an oncogenic lncRNA to promote tumor cell glycolysis and accelerate tumor growth via the miR-495-3p/HK2 axis, providing a promising treatment target for melanoma.


Asunto(s)
Melanoma , MicroARNs , ARN Largo no Codificante , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Transición Epitelial-Mesenquimal/genética , Humanos , Melanoma/genética , Ratones , MicroARNs/genética , ARN Largo no Codificante/genética
19.
BMC Nephrol ; 22(1): 351, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34706669

RESUMEN

BACKGROUND: The relationship between growth differentiation factor 15 (GDF-15) and the development of chronic kidney disease (CKD) is still unclear. We sought to examine whether plasma GDF-15 was related to incident CKD and kidney function decline using a large prospective cohort study. METHODS: 4318 participants of the Malmö Diet and Cancer Study-Cardiovascular Cohort were examined in 1991-1994. Incidence of CKD was followed prospectively by linkage with national patient registers. Estimated glomerular filtration rate (eGFR) was available for all participants at baseline, and was re-measured in a subgroup of 2744 subjects after 16.6 ± 1.49 years. Incidence of CKD was examined in relation to GDF-15 using Cox regression analysis. Logistic regression was used to examine the association of GDF-15 with eGFR change and eGFR-based CKD. Models were carefully corrected for potential confounders including baseline eGFR, N-terminal pro-B-type natriuretic peptide, and competing risk from death. RESULTS: 165 patients developed CKD after 19.2 ± 4.04 years of follow-up. The adjusted hazard ratio (95% confidence interval, CI) for CKD in 4th versus 1st quartile of GDF-15 was 2.37 (1.33, 4.24) (p for trend < 0.01). Each per 1 standard deviation increase in GDF-15 was associated with a decline in eGFR of - 0.97 mL/min/1.73 m2 (95% CI, - 1.49 ~ - 0.45; p < 0.001). GDF-15 was also significantly associated eGFR-based CKD in 2713 subjects with baseline eGFR ≥60 mL/min/1.73 m2. CONCLUSIONS: GDF-15 predicted incidence of CKD and eGFR decline in the general population, independent of a wide range of potential risk factors and competing risk of death.


Asunto(s)
Factor 15 de Diferenciación de Crecimiento/sangre , Factor 15 de Diferenciación de Crecimiento/fisiología , Insuficiencia Renal Crónica/etiología , Anciano , Estudios de Cohortes , Femenino , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Insuficiencia Renal Crónica/epidemiología
20.
J Cell Mol Med ; 24(21): 12716-12725, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32977368

RESUMEN

The role of corticosteroids in acute lung injury (ALI) remains uncertain. This study aims to determine the underlying mechanisms of corticosteroid treatment for lipopolysaccharide (LPS)-induced inflammation and ALI. We used corticosteroid treatment for LPS-induced murine ALI model to investigate the effect of corticosteroid on ALI in vivo. Moreover, LPS-stimulated macrophages were used to explore the specific anti-inflammatory effects of corticosteroids on NLRP3-inflammasome in vitro. We found corticosteroids attenuated LPS-induced ALI, which manifested in reduction of the alveolar structure destruction, the infiltration of neutrophils and the inflammatory cytokines release of interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) in Lung. In vitro, when NLRP3-inflammasome was knocked out, inflammatory response of caspase-1 activation and IL-1ß secretion was obviously declined. Further exploration, our results showed that when corticosteroid preprocessed macrophages before LPS primed, it obviously inhibited the activation of caspase-1 and the maturation of IL-1ß, which depended on inhibiting the nuclear factor-κB (NF-κB) signal pathway activation. However, when corticosteroids intervened the LPS-primed macrophages, it also negatively regulated NLRP3-inflammasome activation through suppressing mitochondrial reactive oxygen species (mtROS) production. Our results revealed that corticosteroids played a protection role in LPS-induced inflammation and ALI by suppressing both NF-κB signal pathway and mtROS-dependent NLRP3 inflammasome activation.


Asunto(s)
Corticoesteroides/uso terapéutico , Inflamasomas/antagonistas & inhibidores , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/antagonistas & inhibidores , Lesión Pulmonar Aguda , Corticoesteroides/farmacología , Animales , Caspasa 1/metabolismo , Dexametasona/farmacología , Dexametasona/uso terapéutico , Activación Enzimática/efectos de los fármacos , Inflamasomas/metabolismo , Inflamación/inducido químicamente , Interleucina-18/metabolismo , Lipopolisacáridos , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda