Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(1): e2313210120, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38147547

RESUMEN

Parasites and their hosts are engaged in reciprocal coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium, genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach, multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing Cryptosporidium parvum, a parasite of cattle and humans, and Cryptosporidium tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward-genetic analysis of parasite biology and host specificity.


Asunto(s)
Criptosporidiosis , Cryptosporidium parvum , Cryptosporidium , Cruzamientos Genéticos , Criptosporidiosis/parasitología , Cryptosporidium/genética , Cryptosporidium parvum/genética , Estadios del Ciclo de Vida
2.
J Immunol ; 212(4): 596-606, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38149914

RESUMEN

Inflammasome-mediated caspase-1 activation facilitates innate immune control of Plasmodium in the liver, thereby limiting the incidence and severity of clinical malaria. However, caspase-1 processing occurs incompletely in both mouse and human hepatocytes and precludes the generation of mature IL-1ß or IL-18, unlike in other cells. Why this is so or how it impacts Plasmodium control in the liver has remained unknown. We show that an inherently reduced expression of the inflammasome adaptor molecule apoptosis-associated specklike protein containing CARD (ASC) is responsible for the incomplete proteolytic processing of caspase-1 in murine hepatocytes. Transgenically enhancing ASC expression in hepatocytes enabled complete caspase-1 processing, enhanced pyroptotic cell death, maturation of the proinflammatory cytokines IL-1ß and IL-18 that was otherwise absent, and better overall control of Plasmodium infection in the liver of mice. This, however, impeded the protection offered by live attenuated antimalarial vaccination. Tempering ASC expression in mouse macrophages, on the other hand, resulted in incomplete processing of caspase-1. Our work shows how caspase-1 activation and function in host cells are fundamentally defined by ASC expression and offers a potential new pathway to create better disease and vaccination outcomes by modifying the latter.


Asunto(s)
Inflamasomas , Malaria , Animales , Humanos , Ratones , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Adaptadoras de Señalización CARD/metabolismo , Caspasa 1/metabolismo , Hepatocitos/metabolismo , Inflamasomas/metabolismo , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(2): e2210181120, 2023 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-36595704

RESUMEN

Malaria, caused by Plasmodium parasites is a severe disease affecting millions of people around the world. Plasmodium undergoes obligatory development and replication in the hepatocytes, before initiating the life-threatening blood-stage of malaria. Although the natural immune responses impeding Plasmodium infection and development in the liver are key to controlling clinical malaria and transmission, those remain relatively unknown. Here we demonstrate that the DNA of Plasmodium parasites is sensed by cytosolic AIM2 (absent in melanoma 2) receptors in the infected hepatocytes, resulting in Caspase-1 activation. Remarkably, Caspase-1 was observed to undergo unconventional proteolytic processing in hepatocytes, resulting in the activation of the membrane pore-forming protein, Gasdermin D, but not inflammasome-associated proinflammatory cytokines. Nevertheless, this resulted in the elimination of Plasmodium-infected hepatocytes and the control of malaria infection in the liver. Our study uncovers a pathway of natural immunity critical for the control of malaria in the liver.


Asunto(s)
Malaria , Parásitos , Plasmodium , Animales , Humanos , Hepatocitos/metabolismo , Hígado , Malaria/parasitología , Caspasas/metabolismo , Proteínas de Unión al ADN/metabolismo
4.
Genome Res ; 32(1): 203-213, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34764149

RESUMEN

Cryptosporidiosis is a leading cause of waterborne diarrheal disease globally and an important contributor to mortality in infants and the immunosuppressed. Despite its importance, the Cryptosporidium community has only had access to a good, but incomplete, Cryptosporidium parvum IOWA reference genome sequence. Incomplete reference sequences hamper annotation, experimental design, and interpretation. We have generated a new C. parvum IOWA genome assembly supported by Pacific Biosciences (PacBio) and Oxford Nanopore long-read technologies and a new comparative and consistent genome annotation for three closely related species: C. parvum, Cryptosporidium hominis, and Cryptosporidium tyzzeri We made 1926 C. parvum annotation updates based on experimental evidence. They include new transporters, ncRNAs, introns, and altered gene structures. The new assembly and annotation revealed a complete Dnmt2 methylase ortholog. Comparative annotation between C. parvum, C. hominis, and C. tyzzeri revealed that most "missing" orthologs are found, suggesting that the biological differences between the species must result from gene copy number variation, differences in gene regulation, and single-nucleotide variants (SNVs). Using the new assembly and annotation as reference, 190 genes are identified as evolving under positive selection, including many not detected previously. The new C. parvum IOWA reference genome assembly is larger, gap free, and lacks ambiguous bases. This chromosomal assembly recovers all 16 chromosome ends, 13 of which are contiguously assembled. The three remaining chromosome ends are provisionally placed. These ends represent duplication of entire chromosome ends including subtelomeric regions revealing a new level of genome plasticity that will both inform and impact future research.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Criptosporidiosis/genética , Cryptosporidium/genética , Variaciones en el Número de Copia de ADN , Genoma , Humanos , Telómero/genética
5.
Antimicrob Agents Chemother ; 68(1): e0100923, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38063509

RESUMEN

Cefiderocol is a siderophore cephalosporin designed to target multi-drug-resistant Gram-negative bacteria. Previously, the emergence of cefiderocol non-susceptibility has been associated with mutations in the chromosomal cephalosporinase (PDC) along with mutations in the PirA and PiuA/D TonB-dependent receptor pathways. Here, we report a clinical case of cefiderocol-resistant P. aeruginosa that emerged in a patient during treatment. This resistance was associated with mutations not previously reported, suggesting potential novel pathways to cefiderocol resistance.


Asunto(s)
Cefiderocol , Infecciones por Pseudomonas , Humanos , Antibacterianos/farmacología , Cefiderocol/farmacología , Cefalosporinas/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Bacterias Gramnegativas , Pruebas de Sensibilidad Microbiana , Monobactamas/farmacología , Pseudomonas aeruginosa , Infecciones por Pseudomonas/tratamiento farmacológico
6.
Genome Res ; 31(5): 852-865, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33906963

RESUMEN

Mitochondrial genome content and structure vary widely across the eukaryotic tree of life, with protists displaying extreme examples. Apicomplexan and dinoflagellate protists have evolved highly reduced mitochondrial genome sequences, mtDNA, consisting of only three cytochrome genes and fragmented rRNA genes. Here, we report the independent evolution of fragmented cytochrome genes in Toxoplasma and related tissue coccidia and evolution of a novel genome architecture consisting minimally of 21 sequence blocks (SBs) totaling 5.9 kb that exist as nonrandom concatemers. Single-molecule Nanopore reads consisting entirely of SBs ranging from 0.1 to 23.6 kb reveal both whole and fragmented cytochrome genes. Full-length cytochrome transcripts including a divergent coxIII are detected. The topology of the mitochondrial genome remains an enigma. Analysis of a cob point mutation reveals that homoplasmy of SBs is maintained. Tissue coccidia are important pathogens of man and animals, and the mitochondrion represents an important therapeutic target. The mtDNA sequence has been elucidated, but a definitive genome architecture remains elusive.


Asunto(s)
Coccidios , Genoma Mitocondrial , Toxoplasma , Animales , Coccidios/genética , ADN Mitocondrial/genética , Eucariontes/genética , Humanos , Toxoplasma/genética
7.
PLoS Pathog ; 17(3): e1009399, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33720977

RESUMEN

Trypanosoma cruzi is a protist parasite and the causative agent of American trypanosomiasis or Chagas disease. The parasite life cycle in its mammalian host includes an intracellular stage, and glycosylated proteins play a key role in host-parasite interaction facilitating adhesion, invasion and immune evasion. Here, we report that a Golgi-localized Mn2+-Ca2+/H+ exchanger of T. cruzi (TcGDT1) is required for efficient protein glycosylation, host cell invasion, and intracellular replication. The Golgi localization was determined by immunofluorescence and electron microscopy assays. TcGDT1 was able to complement the growth defect of Saccharomyces cerevisiae null mutants of its ortholog ScGDT1 but ablation of TcGDT1 by CRISPR/Cas9 did not affect the growth of the insect stage of the parasite. The defect in protein glycosylation was rescued by Mn2+ supplementation to the growth medium, underscoring the importance of this transition metal for Golgi glycosylation of proteins.


Asunto(s)
Proteínas de Transporte de Catión/metabolismo , Enfermedad de Chagas/metabolismo , Interacciones Huésped-Parásitos/fisiología , Manganeso/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/fisiología , Animales , Chlorocebus aethiops , Glicosilación , Aparato de Golgi/metabolismo , Células Vero , Internalización del Virus , Replicación Viral/fisiología
8.
PLoS Pathog ; 17(1): e1009254, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33508020

RESUMEN

The protozoan Trypanosoma cruzi almost invariably establishes life-long infections in humans and other mammals, despite the development of potent host immune responses that constrain parasite numbers. The consistent, decades-long persistence of T. cruzi in human hosts arises at least in part from the remarkable level of genetic diversity in multiple families of genes encoding the primary target antigens of anti-parasite immune responses. However, the highly repetitive nature of the genome-largely a result of these same extensive families of genes-have prevented a full understanding of the extent of gene diversity and its maintenance in T. cruzi. In this study, we have combined long-read sequencing and proximity ligation mapping to generate very high-quality assemblies of two T. cruzi strains representing the apparent ancestral lineages of the species. These assemblies reveal not only the full repertoire of the members of large gene families in the two strains, demonstrating extreme diversity within and between isolates, but also provide evidence of the processes that generate and maintain that diversity, including extensive gene amplification, dispersion of copies throughout the genome and diversification via recombination and in situ mutations. Gene amplification events also yield significant copy number variations in a substantial number of genes presumably not required for or involved in immune evasion, thus forming a second level of strain-dependent variation in this species. The extreme genome flexibility evident in T. cruzi also appears to create unique challenges with respect to preserving core genome functions and gene expression that sets this species apart from related kinetoplastids.


Asunto(s)
Enfermedad de Chagas/parasitología , Variaciones en el Número de Copia de ADN , Genoma de Protozoos/genética , Trypanosoma cruzi/genética , Evolución Molecular , Variación Genética , Humanos
9.
PLoS Pathog ; 17(2): e1009293, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33534803

RESUMEN

Malaria remains a major global health problem, creating a constant need for research to identify druggable weaknesses in P. falciparum biology. As important components of cellular redox biology, members of the Thioredoxin (Trx) superfamily of proteins have received interest as potential drug targets in Apicomplexans. However, the function and essentiality of endoplasmic reticulum (ER)-localized Trx-domain proteins within P. falciparum has not been investigated. We generated conditional mutants of the protein PfJ2-an ER chaperone and member of the Trx superfamily-and show that it is essential for asexual parasite survival. Using a crosslinker specific for redox-active cysteines, we identified PfJ2 substrates as PfPDI8 and PfPDI11, both members of the Trx superfamily as well, which suggests a redox-regulatory role for PfJ2. Knockdown of these PDIs in PfJ2 conditional mutants show that PfPDI11 may not be essential. However, PfPDI8 is required for asexual growth and our data suggest it may work in a complex with PfJ2 and other ER chaperones. Finally, we show that the redox interactions between these Trx-domain proteins in the parasite ER and their substrates are sensitive to small molecule inhibition. Together these data build a model for how Trx-domain proteins in the P. falciparum ER work together to assist protein folding and demonstrate the suitability of ER-localized Trx-domain proteins for antimalarial drug development.


Asunto(s)
Retículo Endoplásmico/parasitología , Proteínas del Choque Térmico HSP40/metabolismo , Malaria Falciparum/parasitología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Tiorredoxina Reductasa 2/metabolismo , Antimaláricos/farmacología , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Proteínas del Choque Térmico HSP40/genética , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/metabolismo , Chaperonas Moleculares , Oxidación-Reducción , Estrés Oxidativo , Pliegue de Proteína , Proteínas Protozoarias/genética , Tiorredoxina Reductasa 2/genética
10.
Proc Natl Acad Sci U S A ; 117(24): 13719-13729, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32482878

RESUMEN

The human malaria parasite, Plasmodium falciparum, contains an essential plastid called the apicoplast. Most apicoplast proteins are encoded by the nuclear genome and it is unclear how the plastid proteome is regulated. Here, we study an apicoplast-localized caseinolytic-protease (Clp) system and how it regulates organelle proteostasis. Using null and conditional mutants, we demonstrate that the P. falciparum Clp protease (PfClpP) has robust enzymatic activity that is essential for apicoplast biogenesis. We developed a CRISPR/Cas9-based system to express catalytically dead PfClpP, which showed that PfClpP oligomerizes as a zymogen and is matured via transautocatalysis. The expression of both wild-type and mutant Clp chaperone (PfClpC) variants revealed a functional chaperone-protease interaction. Conditional mutants of the substrate-adaptor (PfClpS) demonstrated its essential function in plastid biogenesis. A combination of multiple affinity purification screens identified the Clp complex composition as well as putative Clp substrates. This comprehensive study reveals the molecular composition and interactions influencing the proteolytic function of the apicoplast Clp system and demonstrates its central role in the biogenesis of the plastid in malaria parasites.


Asunto(s)
Apicoplastos/enzimología , Endopeptidasa Clp/metabolismo , Plasmodium falciparum/enzimología , Proteínas Protozoarias/metabolismo , Animales , Apicoplastos/genética , Endopeptidasa Clp/genética , Humanos , Malaria/parasitología , Biogénesis de Organelos , Plasmodium falciparum/genética , Proteolisis , Proteínas Protozoarias/genética
11.
FASEB J ; 35(6): e21641, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34041791

RESUMEN

The bloodstream stage of Trypanosoma brucei, the causative agent of African trypanosomiasis, is characterized by its high rate of endocytosis, which is involved in remodeling of its surface coat. Here we present evidence that RNAi-mediated expression down-regulation of vacuolar protein sorting 41 (Vps41), a component of the homotypic fusion and vacuole protein sorting (HOPS) complex, leads to a strong inhibition of endocytosis, vesicle accumulation, enlargement of the flagellar pocket ("big eye" phenotype), and dramatic effect on cell growth. Unexpectedly, other functions described for Vps41 in mammalian cells and yeasts, such as delivery of proteins to lysosomes, and lysosome-related organelles (acidocalcisomes) were unaffected, indicating that in trypanosomes post-Golgi trafficking is distinct from that of mammalian cells and yeasts. The essentiality of TbVps41 suggests that it is a potential drug target.


Asunto(s)
Endocitosis , Lisosomas/metabolismo , Orgánulos/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/fisiología , Tripanosomiasis/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Transporte de Proteínas , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Interferencia de ARN , Tripanosomiasis/parasitología , Proteínas de Transporte Vesicular/antagonistas & inhibidores , Proteínas de Transporte Vesicular/genética
12.
Environ Microbiol ; 23(12): 7523-7537, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34519156

RESUMEN

Finding, characterizing and monitoring reservoirs for antimicrobial resistance (AMR) is vital to protecting public health. Hybridization capture baits are an accurate, sensitive and cost-effective technique used to enrich and characterize DNA sequences of interest, including antimicrobial resistance genes (ARGs), in complex environmental samples. We demonstrate the continued utility of a set of 19 933 hybridization capture baits designed from the Comprehensive Antibiotic Resistance Database (CARD)v1.1.2 and Pathogenicity Island Database (PAIDB)v2.0, targeting 3565 unique nucleotide sequences that confer resistance. We demonstrate the efficiency of our bait set on a custom-made resistance mock community and complex environmental samples to increase the proportion of on-target reads as much as >200-fold. However, keeping pace with newly discovered ARGs poses a challenge when studying AMR, because novel ARGs are continually being identified and would not be included in bait sets designed prior to discovery. We provide imperative information on how our bait set performs against CARDv3.3.1, as well as a generalizable approach for deciding when and how to update hybridization capture bait sets. This research encapsulates the full life cycle of baits for hybridization capture of the resistome from design and validation (both in silico and in vitro) to utilization and forecasting updates and retirement.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética
13.
PLoS Pathog ; 15(9): e1007901, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31513692

RESUMEN

Advances in genomics have made whole genome studies increasingly feasible across the life sciences. However, new technologies and algorithmic advances do not guarantee flawless genomic sequences or annotation. Bias, errors, and artifacts can enter at any stage of the process from library preparation to annotation. When planning an experiment that utilizes a genome sequence as the basis for the design, there are a few basic checks that, if performed, may better inform the experimental design and ideally help avoid a failed experiment or inconclusive result.


Asunto(s)
Mapeo Cromosómico/métodos , Genómica/métodos , Análisis de Secuencia de ADN/métodos , Animales , Secuencia de Bases/genética , Bases de Datos Genéticas , Genoma/genética , Humanos , Reproducibilidad de los Resultados
14.
BMC Genomics ; 19(1): 816, 2018 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-30424726

RESUMEN

BACKGROUND: Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing units (DTUs), named TcI-TcVI. TcII is among the major DTUs enrolled in human infections in South America southern cone, where it is associated with severe cardiac and digestive symptoms. Despite the importance of TcII in Chagas disease epidemiology and pathology, so far, no genome-wide comparisons of the mitochondrial and nuclear genomes of TcII field isolates have been performed to track the variability and evolution of this DTU in endemic regions. RESULTS: In the present work, we have sequenced and compared the whole nuclear and mitochondrial genomes of seven TcII strains isolated from chagasic patients from the central and northeastern regions of Minas Gerais, Brazil, revealing an extensive genetic variability within this DTU. A comparison of the phylogeny based on the nuclear or mitochondrial genomes revealed that the majority of branches were shared by both sequences. The subtle divergences in the branches are probably consequence of mitochondrial introgression events between TcII strains. Two T. cruzi strains isolated from patients living in the central region of Minas Gerais, S15 and S162a, were clustered in the nuclear and mitochondrial phylogeny analysis. These two strains were isolated from the other five by the Espinhaço Mountains, a geographic barrier that could have restricted the traffic of insect vectors during T. cruzi evolution in the Minas Gerais state. Finally, the presence of aneuploidies was evaluated, revealing that all seven TcII strains have a different pattern of chromosomal duplication/loss. CONCLUSIONS: Analysis of genomic variability and aneuploidies suggests that there is significant genomic variability within Minas Gerais TcII strains, which could be exploited by the parasite to allow rapid selection of favorable phenotypes. Also, the aneuploidy patterns vary among T. cruzi strains and does not correlate with the nuclear phylogeny, suggesting that chromosomal duplication/loss are recent and frequent events in the parasite evolution.


Asunto(s)
Aneuploidia , Enfermedad de Chagas/parasitología , Variación Genética , Genoma de Protozoos , Proteínas Protozoarias/genética , Trypanosoma cruzi/genética , Secuenciación Completa del Genoma/métodos , Animales , Enfermedad de Chagas/transmisión , ADN Protozoario/genética , Genotipo , Humanos , Insectos Vectores/parasitología , Tipificación Molecular , Filogenia , Trypanosoma cruzi/clasificación , Trypanosoma cruzi/aislamiento & purificación
15.
BMC Genomics ; 16: 715, 2015 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-26384787

RESUMEN

BACKGROUND: The Leishmania (Viannia) braziliensis complex is responsible for most cases of New World tegumentary leishmaniasis. This complex includes two closely related species but with different geographic distribution and disease phenotypes, L. (V.) peruviana and L. (V.) braziliensis. However, the genetic basis of these differences is not well understood and the status of L. (V.) peruviana as distinct species has been questioned by some. Here we sequenced the genomes of two L. (V.) peruviana isolates (LEM1537 and PAB-4377) using Illumina high throughput sequencing and performed comparative analyses against the L. (V.) braziliensis M2904 reference genome. Comparisons were focused on the detection of Single Nucleotide Polymorphisms (SNPs), insertions and deletions (INDELs), aneuploidy and gene copy number variations. RESULTS: We found 94,070 variants shared by both L. (V.) peruviana isolates (144,079 in PAB-4377 and 136,946 in LEM1537) against the L. (V.) braziliensis M2904 reference genome while only 26,853 variants separated both L. (V.) peruviana genomes. Analysis in coding sequences detected 26,750 SNPs and 1,513 indels shared by both L. (V.) peruviana isolates against L. (V.) braziliensis M2904 and revealed two L. (V.) braziliensis pseudogenes that are likely to have coding potential in L. (V.) peruviana. Chromosomal read density and allele frequency profiling showed a heterogeneous pattern of aneuploidy with an overall disomic tendency in both L. (V.) peruviana isolates, in contrast with a trisomic pattern in the L. (V.) braziliensis M2904 reference. Read depth analysis allowed us to detect more than 368 gene expansions and 14 expanded gene arrays in L. (V.) peruviana, and the likely absence of expanded amastin gene arrays. CONCLUSIONS: The greater numbers of interspecific SNP/indel differences between L. (V.) peruviana and L. (V.) braziliensis and the presence of different gene and chromosome copy number variations support the classification of both organisms as closely related but distinct species. The extensive nucleotide polymorphisms and differences in gene and chromosome copy numbers in L. (V.) peruviana suggests the possibility that these may contribute to some of the unique features of its biology, including a lower pathology and lack of mucosal development.


Asunto(s)
Leishmania braziliensis/genética , Leishmania/genética , Variaciones en el Número de Copia de ADN/genética , Genómica , Polimorfismo de Nucleótido Simple/genética
16.
BMC Genomics ; 16: 499, 2015 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-26141959

RESUMEN

BACKGROUND: Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing units (DTUs), named TcI-TcVI. CL Brener, the reference strain of the T. cruzi genome project, is a hybrid with a genome assembled into 41 putative chromosomes. Gene copy number variation (CNV) is well documented as an important mechanism to enhance gene expression and variability in T. cruzi. Chromosomal CNV (CCNV) is another level of gene CNV in which whole blocks of genes are expanded simultaneously. Although the T. cruzi karyotype is not well defined, several studies have demonstrated a significant variation in the size and content of chromosomes between different T. cruzi strains. Despite these studies, the extent of diversity in CCNV among T. cruzi strains based on a read depth coverage analysis has not been determined. RESULTS: We identify the CCNV in T. cruzi strains from the TcI, TcII and TcIII DTUs, by analyzing the depth coverage of short reads from these strains using the 41 CL Brener chromosomes as reference. This study led to the identification of a broader extent of CCNV in T. cruzi than was previously speculated. The TcI DTU strains have very few aneuploidies, while the strains from TcII and TcIII DTUs present a high degree of chromosomal expansions. Chromosome 31, which is the only chromosome that is supernumerary in all six T. cruzi samples evaluated in this study, is enriched with genes related to glycosylation pathways, highlighting the importance of glycosylation to parasite survival. CONCLUSIONS: Increased gene copy number due to chromosome amplification may contribute to alterations in gene expression, which represents a strategy that may be crucial for parasites that mainly depend on post-transcriptional mechanisms to control gene expression.


Asunto(s)
Variaciones en el Número de Copia de ADN/genética , Genoma de Protozoos/genética , Trypanosoma cruzi/genética , ADN Protozoario/genética , Expresión Génica/genética , Variación Genética/genética , Genómica/métodos , Glicosilación
17.
Parasitol Res ; 113(6): 2199-207, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24728520

RESUMEN

Trypanosoma cruzi and Trypanosoma rangeli are kinetoplastid parasites which are able to infect humans in Central and South America. Misdiagnosis between these trypanosomes can be avoided by targeting barcoding sequences or genes of each organism. This work aims to analyze the feasibility of using species-specific markers for identification of intraspecific polymorphisms and as target for diagnostic methods by PCR. Accordingly, primers which are able to specifically detect T. cruzi or T. rangeli genomic DNA were characterized. The use of intergenic regions, generally divergent in the trypanosomatids, and the serine carboxypeptidase gene were successful. Using T. rangeli genomic sequences for the identification of group-specific polymorphisms and a polymorphic AT(n) dinucleotide repeat permitted the classification of the strains into two groups, which are entirely coincident with T. rangeli main lineages, KP1 (+) and KP1 (-), previously determined by kinetoplast DNA (kDNA) characterization. The sequences analyzed totalize 622 bp (382 bp represent a hypothetical protein sequence, and 240 bp represent an anonymous sequence), and of these, 581 (93.3%) are conserved sites and 41 bp (6.7%) are polymorphic, with 9 transitions (21.9%), 2 transversions (4.9%), and 30 (73.2%) insertion/deletion events. Taken together, the species-specific markers analyzed may be useful for the development of new strategies for the accurate diagnosis of infections. Furthermore, the identification of T. rangeli polymorphisms has a direct impact in the understanding of the population structure of this parasite.


Asunto(s)
Trypanosoma cruzi/genética , Trypanosoma rangeli/genética , Tripanosomiasis/parasitología , Secuencia de Bases , Clonación Molecular , ADN Protozoario/genética , Marcadores Genéticos , Humanos , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo Genético , Especificidad de la Especie , Trypanosoma cruzi/clasificación , Trypanosoma rangeli/clasificación , Tripanosomiasis/diagnóstico
18.
J Vet Diagn Invest ; 36(1): 46-55, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37968872

RESUMEN

Canine respiratory coronavirus (CRCoV) is one of the main causative agents of canine infectious respiratory disease (CIRD), an illness whose epidemiology is poorly understood. We assessed the prevalence, risk factors, and genetic characterization of CRCoV in privately owned dogs in the Southeastern United States. We PCR-screened 189 nasal swabs from dogs with and without CIRD clinical signs for 9 CIRD-related pathogens, including CRCoV; 14% of dogs, all diagnosed with CIRD, were positive for CRCoV, with a significantly higher rate of cases in younger dogs and during warmer weather. Notably, the presence of CRCoV, alone or in coinfection with other CIRD pathogens, was statistically associated with a worse prognosis. We estimated a CRCoV seroprevalence of 23.7% retrospectively from 540 serum samples, with no statistical association to dog age, sex, or season, but with a significantly higher presence in urban counties. Additionally, the genomes of 6 CRCoVs were obtained from positive samples using an in-house developed targeted amplicon-based approach specific to CRCoV. Subsequent phylogeny clustered their genomes in 2 distinct genomic groups, with most isolates sharing a higher similarity with CRCoVs from Sweden and only 1 more closely related to CRCoVs from Asia. We provide new insights into CIRD and CRCoV epidemiology in the Southeastern United States and further support the association of CRCoV with more severe cases of CIRD. Additionally, we developed and successfully tested a new amplicon-based approach for whole-genome sequencing of CRCoV that can be used to further investigate the genetic diversity within CRCoVs.


Asunto(s)
Infecciones por Coronavirus , Coronavirus Canino , Enfermedades de los Perros , Infecciones del Sistema Respiratorio , Perros , Animales , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/veterinaria , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Coronavirus Canino/genética , Estudios Seroepidemiológicos , Estudios Retrospectivos , Sudeste de Estados Unidos/epidemiología
19.
bioRxiv ; 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38405792

RESUMEN

Cryptosporidium spp. are medically and scientifically relevant protozoan parasites that cause severe diarrheal illness in infants and immunosuppressed populations as well as animals. Although most human Cryptosporidium infections are caused by C. parvum and C. hominis, there are several other human-infecting species including C. meleagridis, which is commonly observed in developing countries. Here, we polished and annotated a long-read genome sequence assembly for C. meleagridis TU1867, a species which infects birds and humans. The genome sequence was generated using a combination of whole genome amplification (WGA) and long-read Oxford Nanopore Technologies sequencing. The assembly was then polished with Illumina data. The chromosome-level genome assembly is 9.2 Mbp with a contig N50 of 1.1 Mb. Annotation revealed 3,923 protein-coding genes. A BUSCO analysis indicates a completeness of 96.6% (n=446), including 430 (96.4%) single-copy and 1 (0.224%) duplicated apicomplexan conserved gene(s). The new C. meleagridis genome assembly is nearly gap-free and provides a valuable new resource for the Cryptosporidium community and future studies on evolution and host-specificity.

20.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352536

RESUMEN

The siderophore-cephalosporin cefiderocol(FDC) presents a promising treatment option for carbapenem-resistant (CR) P. aeruginosa (PA). FDC circumvents traditional porin and efflux mediated resistance by utilizing TonB-dependent receptors (TBDRs) to access the periplasmic space. Emerging FDC resistance has been associated with loss of function mutations within TBDR genes or the regulatory genes controlling TBDR expression. Further, difficulties with antimicrobial susceptibility testing (AST) and unexpected negative clinical treatment outcomes have prompted concerns for heteroresistance, where a single lineage isolate contains resistant subpopulations not detectable by standard AST. This study aimed to evaluate the prevalence of TBDR mutations among clinical isolates of P. aeruginosa and the phenotypic effect on FDC susceptibility and heteroresistance. We evaluated the sequence of pirR , pirS , pirA , piuA or piuD from 498 unique isolates collected before the introduction of FDC from 4 clinical sites in Portland, OR (1), Houston, TX (2), and Santiago, Chile (1). At some clinical sites, TBDR mutations were seen in up to 25% of isolates, and insertion, deletion, or frameshift mutations were predicted to impair protein function were seen in 3% of all isolates (n=15). Using population analysis profile testing, we found that P. aeruginosa with major TBDR mutations were enriched for a heteroresistant phenotype and undergo a shift in the susceptibility distribution of the population as compared to susceptible strains with wild type TBDR genes. Our results indicate that mutations in TBDR genes predate the clinical introduction of FDC, and these mutations may predispose to the emergence of FDC resistance.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda