Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Nat Immunol ; 24(2): 359-370, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36536105

RESUMEN

Understanding the complexity of the long-lived HIV reservoir during antiretroviral therapy (ART) remains a considerable impediment in research towards a cure for HIV. To address this, we developed a single-cell strategy to precisely define the unperturbed peripheral blood HIV-infected memory CD4+ T cell reservoir from ART-treated people living with HIV (ART-PLWH) via the presence of integrated accessible proviral DNA in concert with epigenetic and cell surface protein profiling. We identified profound reservoir heterogeneity within and between ART-PLWH, characterized by new and known surface markers within total and individual memory CD4+ T cell subsets. We further uncovered new epigenetic profiles and transcription factor motifs enriched in HIV-infected cells that suggest infected cells with accessible provirus, irrespective of reservoir distribution, are poised for reactivation during ART treatment. Together, our findings reveal the extensive inter- and intrapersonal cellular heterogeneity of the HIV reservoir, and establish an initial multiomic atlas to develop targeted reservoir elimination strategies.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/fisiología , Linfocitos T CD4-Positivos , Latencia del Virus/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Epigénesis Genética , Carga Viral , Antirretrovirales/uso terapéutico
2.
PLoS Pathog ; 19(11): e1011755, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38032851

RESUMEN

HIV rapidly rebounds after interruption of antiretroviral therapy (ART). HIV-specific CD8+ T cells may act to prevent early events in viral reactivation. However, the presence of viral immune escape mutations may limit the effect of CD8+ T cells on viral rebound. Here, we studied the impact of CD8 immune pressure on post-treatment rebound of barcoded SIVmac293M in 14 Mamu-A*01 positive rhesus macaques that initiated ART on day 14, and subsequently underwent two analytic treatment interruptions (ATIs). Rebound following the first ATI (seven months after ART initiation) was dominated by virus that retained the wild-type sequence at the Mamu-A*01 restricted Tat-SL8 epitope. By the end of the two-month treatment interruption, the replicating virus was predominantly escaped at the Tat-SL8 epitope. Animals reinitiated ART for 3 months prior to a second treatment interruption. Time-to-rebound and viral reactivation rate were significantly slower during the second treatment interruption compared to the first. Tat-SL8 escape mutants dominated early rebound during the second treatment interruption, despite the dominance of wild-type virus in the proviral reservoir. Furthermore, the escape mutations detected early in the second treatment interruption were well predicted by those replicating at the end of the first, indicating that escape mutant virus in the second interruption originated from the latent reservoir as opposed to evolving de novo post rebound. SL8-specific CD8+ T cell levels in blood prior to the second interruption were marginally, but significantly, higher (median 0.73% vs 0.60%, p = 0.016). CD8+ T cell depletion approximately 95 days after the second treatment interruption led to the reappearance of wild-type virus. This work suggests that CD8+ T cells can actively suppress the rebound of wild-type virus, leading to the dominance of escape mutant virus after treatment interruption.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Macaca mulatta , Replicación Viral/fisiología , Linfocitos T CD8-positivos , Epítopos , Carga Viral , Antirretrovirales/uso terapéutico , Antirretrovirales/farmacología
3.
PLoS Pathog ; 19(7): e1011059, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37399208

RESUMEN

Transmitted/founder (TF) simian-human immunodeficiency viruses (SHIVs) express HIV-1 envelopes modified at position 375 to efficiently infect rhesus macaques while preserving authentic HIV-1 Env biology. SHIV.C.CH505 is an extensively characterized virus encoding the TF HIV-1 Env CH505 mutated at position 375 shown to recapitulate key features of HIV-1 immunobiology, including CCR5-tropism, a tier 2 neutralization profile, reproducible early viral kinetics, and authentic immune responses. SHIV.C.CH505 is used frequently in nonhuman primate studies of HIV, but viral loads after months of infection are variable and typically lower than those in people living with HIV. We hypothesized that additional mutations besides Δ375 might further enhance virus fitness without compromising essential components of CH505 Env biology. From sequence analysis of SHIV.C.CH505-infected macaques across multiple experiments, we identified a signature of envelope mutations associated with higher viremia. We then used short-term in vivo mutational selection and competition to identify a minimally adapted SHIV.C.CH505 with just five amino acid changes that substantially improve virus replication fitness in macaques. Next, we validated the performance of the adapted SHIV in vitro and in vivo and identified the mechanistic contributions of selected mutations. In vitro, the adapted SHIV shows improved virus entry, enhanced replication on primary rhesus cells, and preserved neutralization profiles. In vivo, the minimally adapted virus rapidly outcompetes the parental SHIV with an estimated growth advantage of 0.14 days-1 and persists through suppressive antiretroviral therapy to rebound at treatment interruption. Here, we report the successful generation of a well-characterized, minimally adapted virus, termed SHIV.C.CH505.v2, with enhanced replication fitness and preserved native Env properties that can serve as a new reagent for NHP studies of HIV-1 transmission, pathogenesis, and cure.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Macaca mulatta/metabolismo , Productos del Gen env del Virus de la Inmunodeficiencia Humana , Replicación Viral/fisiología
4.
N Engl J Med ; 385(13): 1184-1195, 2021 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-34347950

RESUMEN

BACKGROUND: REGEN-COV (previously known as REGN-COV2), a combination of the monoclonal antibodies casirivimab and imdevimab, has been shown to markedly reduce the risk of hospitalization or death among high-risk persons with coronavirus disease 2019 (Covid-19). Whether subcutaneous REGEN-COV prevents severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and subsequent Covid-19 in persons at high risk for infection because of household exposure to a person with SARS-CoV-2 infection is unknown. METHODS: We randomly assigned, in a 1:1 ratio, participants (≥12 years of age) who were enrolled within 96 hours after a household contact received a diagnosis of SARS-CoV-2 infection to receive a total dose of 1200 mg of REGEN-COV or matching placebo administered by means of subcutaneous injection. At the time of randomization, participants were stratified according to the results of the local diagnostic assay for SARS-CoV-2 and according to age. The primary efficacy end point was the development of symptomatic SARS-CoV-2 infection through day 28 in participants who did not have SARS-CoV-2 infection (as measured by reverse-transcriptase-quantitative polymerase-chain-reaction assay) or previous immunity (seronegativity). RESULTS: Symptomatic SARS-CoV-2 infection developed in 11 of 753 participants in the REGEN-COV group (1.5%) and in 59 of 752 participants in the placebo group (7.8%) (relative risk reduction [1 minus the relative risk], 81.4%; P<0.001). In weeks 2 to 4, a total of 2 of 753 participants in the REGEN-COV group (0.3%) and 27 of 752 participants in the placebo group (3.6%) had symptomatic SARS-CoV-2 infection (relative risk reduction, 92.6%). REGEN-COV also prevented symptomatic and asymptomatic infections overall (relative risk reduction, 66.4%). Among symptomatic infected participants, the median time to resolution of symptoms was 2 weeks shorter with REGEN-COV than with placebo (1.2 weeks and 3.2 weeks, respectively), and the duration of a high viral load (>104 copies per milliliter) was shorter (0.4 weeks and 1.3 weeks, respectively). No dose-limiting toxic effects of REGEN-COV were noted. CONCLUSIONS: Subcutaneous REGEN-COV prevented symptomatic Covid-19 and asymptomatic SARS-CoV-2 infection in previously uninfected household contacts of infected persons. Among the participants who became infected, REGEN-COV reduced the duration of symptomatic disease and the duration of a high viral load. (Funded by Regeneron Pharmaceuticals and others; ClinicalTrials.gov number, NCT04452318.).


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , COVID-19/prevención & control , SARS-CoV-2 , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Asintomáticas , COVID-19/virología , Niño , Método Doble Ciego , Combinación de Medicamentos , Femenino , Humanos , Incidencia , Inyecciones Subcutáneas , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Carga Viral , Adulto Joven , Tratamiento Farmacológico de COVID-19
5.
Mol Ther ; 31(4): 1059-1073, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36760126

RESUMEN

We aim to develop an in vivo hematopoietic stem cell (HSC) gene therapy approach for persistent control/protection of HIV-1 infection based on the stable expression of a secreted decoy protein for HIV receptors CD4 and CCR5 (eCD4-Ig) from blood cells. HSCs in mice and a rhesus macaque were mobilized from the bone marrow and transduced by an intravenous injection of HSC-tropic, integrating HDAd5/35++ vectors expressing rhesus eCD4-Ig. In vivo HSC transduction/selection resulted in stable serum eCD4-Ig levels of ∼100 µg/mL (mice) and >20 µg/mL (rhesus) with half maximal inhibitory concentrations (IC50s) of 1 µg/mL measured by an HIV neutralization assay. After simian-human-immunodeficiency virus D (SHIV.D) challenge of rhesus macaques injected with HDAd-eCD4-Ig or a control HDAd5/35++ vector, peak plasma viral load levels were ∼50-fold lower in the eCD4-Ig-expressing animal. Furthermore, the viral load was lower in tissues with the highest eCD4-Ig expression, specifically the spleen and lymph nodes. SHIV.D challenge triggered a selective expansion of transduced CD4+CCR5+ cells, thereby increasing serum eCD4-Ig levels. The latter, however, broke immune tolerance and triggered anti-eCD4-Ig antibody responses, which could have contributed to the inability to eliminate SHIV.D. Our data will guide us in the improvement of the in vivo approach. Clearly, our conclusions need to be validated in larger animal cohorts.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Humanos , Animales , Ratones , Macaca mulatta , Virus de la Inmunodeficiencia de los Simios/genética , Células Madre Hematopoyéticas , Síndrome de Inmunodeficiencia Adquirida del Simio/terapia
6.
Retrovirology ; 20(1): 13, 2023 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-37563642

RESUMEN

A biologically relevant non-human primate (NHP) model of HIV persistence in the central nervous system (CNS) is necessary. Most current NHP/SIV models of HIV infection fail to recapitulate viral persistence in the CNS without encephalitis or fail to employ viruses that authentically represent the ongoing HIV-1 pandemic. Here, we demonstrate viral replication in the brain and neuropathogenesis after combination antiretroviral therapy (ART) in rhesus macaques (RMs) using novel macrophage-tropic transmitted/founder (TF) simian-human immunodeficiency virus SHIV.D.191,859 (SHIV.D). Quantitative immunohistochemistry (IHC) and DNA/RNAscope in situ hybridization (ISH) were performed on three brain regions from six SHIV.D-infected RMs; two necropsied while viremic, two during analytical treatment interruptions, and two on suppressive ART. We demonstrated myeloid-mediated neuroinflammation, viral replication, and proviral DNA in the brain in all animals. These results demonstrate that TF SHIV.D models native HIV-1 CNS replication, pathogenesis, and persistence on ART in rhesus macaques.


Asunto(s)
Infecciones por VIH , VIH-1 , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Humanos , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Infecciones por VIH/tratamiento farmacológico , Terapia Antirretroviral Altamente Activa , Virus de la Inmunodeficiencia de los Simios/genética , Encéfalo , VIH-1/genética , Replicación Viral/fisiología , Carga Viral
7.
Proc Natl Acad Sci U S A ; 117(50): 32066-32077, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33239444

RESUMEN

In untreated HIV-1 infection, rapid viral evolution allows escape from immune responses. Viral replication can be blocked by antiretroviral therapy. However, HIV-1 persists in a latent reservoir in resting CD4+ T cells, and rebound viremia occurs following treatment interruption. The reservoir, which is maintained in part by clonal expansion, can be measured using quantitative viral outgrowth assays (QVOAs) in which latency is reversed with T cell activation to allow viral outgrowth. Recent studies have shown that viruses detected in QVOAs prior to treatment interruption often differ from rebound viruses. We hypothesized that autologous neutralizing antibodies directed at the HIV-1 envelope (Env) protein might block outgrowth of some reservoir viruses. We modified the QVOA to reflect pressure from low concentrations of autologous antibodies and showed that outgrowth of a substantial but variable fraction of reservoir viruses is blocked by autologous contemporaneous immunoglobulin G (IgG). A reduction in outgrowth of >80% was seen in 6 of 15 individuals. This effect was due to direct neutralization. We established a phylogenetic relationship between rebound viruses and viruses growing out in vitro in the presence of autologous antibodies. Some large infected cell clones detected by QVOA carried neutralization-sensitive viruses, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs. Measurement of the frequency of reservoir viruses capable of outgrowth in the presence of autologous IgG might allow more accurate prediction of time to viral rebound. Ultimately, therapeutic immunization targeting the subset of variants resistant to autologous IgG might contribute to a functional cure.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/terapia , VIH-1/inmunología , Replicación Viral/inmunología , Adulto , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/uso terapéutico , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Neutralizantes/uso terapéutico , Transfusión de Sangre Autóloga/métodos , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Células Cultivadas , Terapia Combinada/métodos , Femenino , Anticuerpos Anti-VIH/sangre , Anticuerpos Anti-VIH/aislamiento & purificación , Anticuerpos Anti-VIH/uso terapéutico , Infecciones por VIH/sangre , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina G/aislamiento & purificación , Inmunoglobulina G/uso terapéutico , Leucaféresis , Masculino , Persona de Mediana Edad , Cultivo Primario de Células , Latencia del Virus/efectos de los fármacos , Latencia del Virus/inmunología , Replicación Viral/efectos de los fármacos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
8.
J Virol ; 95(9)2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33568508

RESUMEN

Chimeric simian/human immunodeficiency viruses (SHIVs) are widely used in nonhuman primate models to recapitulate human immunodeficiency virus (HIV) infection in humans, yet most SHIVs fail to establish persistent viral infection. We investigated immunological and virological events in rhesus macaques infected with the newly developed SHIV.C.CH848 (SHIVC) and treated with combined antiretroviral therapy (cART). Similar to HIV/simian immunodeficiency virus (SIV) infection, SHIV.C.CH848 infection established viral reservoirs in CD4+ T cells and myeloid cells, accompanied by productive infection and depletion of CD4+ T cells in systemic and lymphoid tissues throughout SHIV infection. Despite 6 months of cART-suppressed viral replication, integrated proviral DNA levels remained stable, especially in CD4+ T cells, and the viral rebound was also observed after ART interruption. Autologous neutralizing antibodies to the parental HIV-1 strain CH848 were detected, with limited viral evolution at 5 months postinfection. In comparison, heterogenous neutralizing antibodies in SHIV.C.CH848-infected macaques were not detected except for 1 (1 of 10) animal at 2 years postinfection. These findings suggest that SHIV.C.CH848, a novel class of transmitted/founder SHIVs, can establish sustained viremia and viral reservoirs in rhesus macaques with clinical immunodeficiency consequences, providing a valuable SHIV model for HIV research.IMPORTANCE SHIVs have been extensively used in a nonhuman primate (NHP) model for HIV research. In this study, we investigated viral reservoirs in tissues and immune responses in an NHP model inoculated with newly generated transmitted/founder HIV-1 clade C-based SHIV.C.CH848. The data show that transmitted founder (T/F) SHIVC infection of macaques more closely recapitulates the virological and clinical features of HIV infection, including persistent viremia and viral rebound once antiretroviral therapy is discontinued. These results suggest this CCR5-tropic, SHIVC strain is valuable for testing responses to HIV vaccines and therapeutics.


Asunto(s)
Modelos Animales de Enfermedad , Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Animales , Antirretrovirales/uso terapéutico , Anticuerpos Neutralizantes/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1 , Humanos , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios , Carga Viral/efectos de los fármacos , Viremia/tratamiento farmacológico
9.
J Virol ; 95(3)2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33177194

RESUMEN

Daily burden and clinical toxicities associated with antiretroviral therapy (ART) emphasize the need for alternative strategies to induce long-term human immunodeficiency virus (HIV) remission upon ART cessation. Broadly neutralizing antibodies (bNAbs) can both neutralize free virions and mediate effector functions against infected cells and therefore represent a leading immunotherapeutic approach. To increase potency and breadth, as well as to limit the development of resistant virus strains, it is likely that bNAbs will need to be administered in combination. It is therefore critical to identify bNAb combinations that can achieve robust polyfunctional antiviral activity against a high number of HIV strains. In this study, we systematically assessed the abilities of single bNAbs and triple bNAb combinations to mediate robust polyfunctional antiviral activity against a large panel of cross-clade simian-human immunodeficiency viruses (SHIVs), which are commonly used as tools for validation of therapeutic strategies targeting the HIV envelope in nonhuman primate models. We demonstrate that most bNAbs are capable of mediating both neutralizing and nonneutralizing effector functions against cross-clade SHIVs, although the susceptibility to V3 glycan-specific bNAbs is highly strain dependent. Moreover, we observe a strong correlation between the neutralization potencies and nonneutralizing effector functions of bNAbs against the transmitted/founder SHIV CH505. Finally, we identify several triple bNAb combinations comprising of CD4 binding site-, V2-glycan-, and gp120-gp41 interface-targeting bNAbs that are capable of mediating synergistic polyfunctional antiviral activities against multiple clade A, B, C, and D SHIVs.IMPORTANCE Optimal bNAb immunotherapeutics will need to mediate multiple antiviral functions against a broad range of HIV strains. Our systematic assessment of triple bNAb combinations against SHIVs will identify bNAbs with synergistic, polyfunctional antiviral activity that will inform the selection of candidate bNAbs for optimal combination designs. The identified combinations can be validated in vivo in future passive immunization studies using the SHIV challenge model.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos ampliamente neutralizantes/uso terapéutico , Anticuerpos Anti-VIH/uso terapéutico , Mutación , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Animales , Citotoxicidad Celular Dependiente de Anticuerpos , Humanos , Inmunización Pasiva , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética
10.
J Virol ; 95(11)2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33658341

RESUMEN

Previously, we showed that substitution of HIV-1 Env residue 375-Ser by bulky aromatic residues enhances binding to rhesus CD4 and enables primary HIV-1 Envs to support efficient replication as simian-human immunodeficiency virus (SHIV) chimeras in rhesus macaques (RMs). Here, we test this design strategy more broadly by constructing SHIVs containing ten primary Envs corresponding to HIV-1 subtypes A, B, C, AE and AG. All ten SHIVs bearing wildtype Env375 residues replicated efficiently in human CD4+ T cells, but only one replicated efficiently in primary rhesus cells. This was a subtype AE SHIV that naturally contained His at Env375. Replacement of wildtype Env375 residues by Trp, Tyr, Phe or His in the other nine SHIVs led to efficient replication in rhesus CD4+ T cells in vitro and in vivo Nine SHIVs containing optimized Env375 alleles were grown large-scale in primary rhesus CD4+ T cells to serve as challenge stocks in preclinical prevention trials. These virus stocks were genetically homogeneous, native-like in Env antigenicity and tier-2 neutralization sensitivity, and transmissible by rectal, vaginal, penile, oral or intravenous routes. To facilitate future SHIV constructions, we engineered a simplified second-generation design scheme and validated it in RMs. Overall, our findings demonstrate that SHIVs bearing primary Envs with bulky aromatic substitutions at Env375 consistently replicate in RMs, recapitulating many features of HIV-1 infection in humans. Such SHIVs are efficiently transmitted by mucosal routes common to HIV-1 infection and can be used to test vaccine efficacy in preclinical monkey trials.ImportanceSHIV infection of Indian rhesus macaques is an important animal model for studying HIV-1 transmission, prevention, immunopathogenesis and cure. Such research is timely, given recent progress with active and passive immunization and novel approaches to HIV-1 cure. Given the multifaceted roles of HIV-1 Env in cell tropism and virus entry, and as a target for neutralizing and non-neutralizing antibodies, Envs selected for SHIV construction are of paramount importance. Until recently, it has been impossible to strategically design SHIVs bearing clinically relevant Envs that replicate consistently in monkeys. This changed with the discovery that bulky aromatic substitutions at residue Env375 confer enhanced affinity to rhesus CD4. Here, we show that 10 new SHIVs bearing primary HIV-1 Envs with residue 375 substitutions replicated efficiently in RMs and could be transmitted efficiently across rectal, vaginal, penile and oral mucosa. These findings suggest an expanded role for SHIVs as a model of HIV-1 infection.

11.
Curr HIV/AIDS Rep ; 19(3): 194-206, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35404007

RESUMEN

PURPOSE OF REVIEW: Despite suppressive antiretroviral therapy (ART), a viral reservoir persists in individuals living with HIV that can reignite systemic replication should treatment be interrupted. Understanding how HIV-1 persists through effective ART is essential to develop cure strategies to induce ART-free virus remission. RECENT FINDINGS: The HIV-1 reservoir resides in a pool of CD4-expressing cells as a range of viral species, a subset of which is genetically intact. Recent studies suggest that the reservoir on ART is highly dynamic, with expansion and contraction of virus-infected cells over time. Overall, the intact proviral reservoir declines faster than defective viruses, suggesting enhanced immune clearance or cellular turnover. Upon treatment interruption, rebound viruses demonstrate escape from adaptive and innate immune responses, implicating these selective pressures in restriction of virus reactivation. Cure strategies employing immunotherapy are poised to test whether host immune pressure can be augmented to enhance reservoir suppression or clearance. Alternatively, genomic engineering approaches are being applied to directly eliminate intact viruses and shrink the replication-competent virus pool. New evidence suggests host immunity exerts selective pressure on reservoir viruses and clears HIV-1 infected cells over years on ART. Efforts to build on the detectable, but insufficient, reservoir clearance via empiric testing in clinical trials will inform our understanding of mechanisms of viral persistence and the direction of future cure strategies.


Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos , Seropositividad para VIH/tratamiento farmacológico , Humanos , Provirus/genética , Carga Viral , Latencia del Virus , Replicación Viral
12.
JAMA ; 327(5): 432-441, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35029629

RESUMEN

Importance: Easy-to-administer anti-SARS-CoV-2 treatments may be used to prevent progression from asymptomatic infection to symptomatic disease and to reduce viral carriage. Objective: To evaluate the effect of combination subcutaneous casirivimab and imdevimab on progression from early asymptomatic SARS-CoV-2 infection to symptomatic COVID-19. Design, Setting, and Participants: Randomized, double-blind, placebo-controlled, phase 3 trial of close household contacts of a SARS-CoV-2-infected index case at 112 sites in the US, Romania, and Moldova enrolled July 13, 2020-January 28, 2021; follow-up ended March 11, 2021. Asymptomatic individuals (aged ≥12 years) were eligible if identified within 96 hours of index case positive test collection. Results from 314 individuals positive on SARS-CoV-2 reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) testing are reported. Interventions: Individuals were randomized 1:1 to receive 1 dose of subcutaneous casirivimab and imdevimab, 1200 mg (600 mg of each; n = 158), or placebo (n = 156). Main Outcomes and Measures: The primary end point was the proportion of seronegative participants who developed symptomatic COVID-19 during the 28-day efficacy assessment period. The key secondary efficacy end points were the number of weeks of symptomatic SARS-CoV-2 infection and the number of weeks of high viral load (>4 log10 copies/mL). Results: Among 314 randomized participants (mean age, 41.0 years; 51.6% women), 310 (99.7%) completed the efficacy assessment period; 204 were asymptomatic and seronegative at baseline and included in the primary efficacy analysis. Subcutaneous casirivimab and imdevimab, 1200 mg, significantly prevented progression to symptomatic disease (29/100 [29.0%] vs 44/104 [42.3%] with placebo; odds ratio, 0.54 [95% CI, 0.30-0.97]; P = .04; absolute risk difference, -13.3% [95% CI, -26.3% to -0.3%]). Casirivimab and imdevimab reduced the number of symptomatic weeks per 1000 participants (895.7 weeks vs 1637.4 weeks with placebo; P = .03), an approximately 5.6-day reduction in symptom duration per symptomatic participant. Treatment with casirivimab and imdevimab also reduced the number of high viral load weeks per 1000 participants (489.8 weeks vs 811.9 weeks with placebo; P = .001). The proportion of participants receiving casirivimab and imdevimab who had 1 or more treatment-emergent adverse event was 33.5% vs 48.1% for placebo, including events related (25.8% vs 39.7%) or not related (11.0% vs 16.0%) to COVID-19. Conclusions and Relevance: Among asymptomatic SARS-CoV-2 RT-qPCR-positive individuals living with an infected household contact, treatment with subcutaneous casirivimab and imdevimab antibody combination vs placebo significantly reduced the incidence of symptomatic COVID-19 over 28 days. Trial Registration: ClinicalTrials.gov Identifier: NCT04452318.


Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Tratamiento Farmacológico de COVID-19 , SARS-CoV-2/aislamiento & purificación , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/efectos adversos , Infecciones Asintomáticas , COVID-19/epidemiología , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Niño , Progresión de la Enfermedad , Método Doble Ciego , Combinación de Medicamentos , Femenino , Humanos , Incidencia , Inyecciones Subcutáneas , Masculino , Persona de Mediana Edad , Factores de Riesgo , Carga Viral
13.
Emerg Infect Dis ; 27(9): 2454-2458, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34193339

RESUMEN

Not all persons recovering from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection develop SARS-CoV-2-specific antibodies. We show that nonseroconversion is associated with younger age and higher reverse transcription PCR cycle threshold values and identify SARS-CoV-2 viral loads in the nasopharynx as a major correlate of the systemic antibody response.


Asunto(s)
COVID-19 , Formación de Anticuerpos , COVID-19/inmunología , Prueba Serológica para COVID-19 , Humanos , Nasofaringe , SARS-CoV-2 , Seroconversión
14.
J Virol ; 94(8)2020 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-31969435

RESUMEN

A robust simian-human immunodeficiency virus (SHIV)-macaque model of latency is critical to investigate eradicative and suppressive strategies that target HIV-1 Env. To this end, we previously reported a novel strategy for constructing SHIVs that bear primary or transmitted/founder (TF) Envs with modifications at Env residue 375 that enable efficient replication in Indian rhesus macaques (RM). Such TF SHIVs, however, have not been examined for their suitability for HIV-1 latency and cure research. Here, we evaluate two promising TF SHIVs, SHIV.D.191859 and SHIV.C.CH848, which encode TF subtype D and C HIV-1 Envs, respectively, for their viral kinetics and persistence during suppressive combination antiretroviral therapy (cART) and treatment interruption in RM. Our results suggest that the viral kinetics of these SHIVs in RM during acute, early, and chronic infection, and upon cART initiation, maintenance and discontinuation, mirror those of HIV-1 infection. We demonstrate consistent early peak and set point viremia, rapid declines in viremia to undetectable plasma titers following cART initiation, infection of long-lived cellular subsets and establishment of viral latency, and viral rebound with return to pretreatment set point viremia following treatment interruption. The viral dynamics and reservoir biology of SHIV.D.191859, and to a lesser extent SHIV.C.CH848, during chronic infection, cART administration, and upon treatment interruption suggest that these TF SHIVs are promising reagents for a SHIV model of HIV-1 latency and cure.IMPORTANCE Simian-human immunodeficiency viruses (SHIVs) have been successfully used for over 2 decades to study virus-host interactions, transmission, and pathogenesis in rhesus macaques. The majority of Env trimers of most previously studied SHIVs, however, do not recapitulate key properties of transmitted/founder (TF) or primary HIV-1 isolates, such as CCR5 tropism, tier 2 neutralization resistance, and native trimer conformation. Here, we test two recently generated TF SHIVs, SHIV.D.191859 and SHIV.C.CH848, which were designed to address these issues as components of a nonhuman primate model of HIV-1 latency. We conclude that the TF SHIV-macaque model reflects several hallmarks of HIV and SIV infection and latency. Results suggest that this model has broad applications for evaluating eradicative and suppressive strategies against the HIV reservoir, including Env-specific interventions, therapeutic vaccines, and engineered T cells.


Asunto(s)
Infecciones por VIH/virología , VIH-1/fisiología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/fisiología , Latencia del Virus/fisiología , Replicación Viral/fisiología , Animales , Antirretrovirales/uso terapéutico , Modelos Animales de Enfermedad , Infecciones por VIH/complicaciones , VIH-1/efectos de los fármacos , Cinética , Macaca mulatta , Síndrome de Inmunodeficiencia Adquirida del Simio/complicaciones , Virus de la Inmunodeficiencia de los Simios/genética , Tropismo , Viremia , Productos del Gen env del Virus de la Inmunodeficiencia Humana
15.
J Virol ; 94(21)2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-32817214

RESUMEN

The "shock-and-kill" human immunodeficiency virus type 1 (HIV-1) cure strategy involves latency reversal followed by immune-mediated clearance of infected cells. We have previously shown that activation of the noncanonical NF-κB pathway using an inhibitor of apoptosis (IAP), AZD5582, reverses HIV/simian immunodeficiency virus (SIV) latency. Here, we combined AZD5582 with bispecific HIVxCD3 DART molecules to determine the impact of this approach on persistence. Rhesus macaques (RMs) (n = 13) were infected with simian/human immunodeficiency virus SHIV.C.CH505.375H.dCT, and triple antiretroviral therapy (ART) was initiated after 16 weeks. After 42 weeks of ART, 8 RMs received a cocktail of 3 HIVxCD3 DART molecules having human A32, 7B2, or PGT145 anti-HIV-1 envelope (Env) specificities paired with a human anti-CD3 specificity that is rhesus cross-reactive. The remaining 5 ART-suppressed RMs served as controls. For 10 weeks, a DART molecule cocktail was administered weekly (each molecule at 1 mg/kg of body weight), followed 2 days later by AZD5582 (0.1 mg/kg). DART molecule serum concentrations were well above those considered adequate for redirected killing activity against Env-expressing target cells but began to decline after 3 to 6 weekly doses, coincident with the development of antidrug antibodies (ADAs) against each of the DART molecules. The combination of AZD5582 and the DART molecule cocktail did not increase on-ART viremia or cell-associated SHIV RNA in CD4+ T cells and did not reduce the viral reservoir size in animals on ART. The lack of latency reversal in the model used in this study may be related to low pre-ART viral loads (median, <105 copies/ml) and low preintervention reservoir sizes (median, <102 SHIV DNA copies/million blood CD4+ T cells). Future studies to assess the efficacy of Env-targeting DART molecules or other clearance agents to reduce viral reservoirs after latency reversal may be more suited to models that better minimize immunogenicity and have a greater viral burden.IMPORTANCE The most significant barrier to an HIV-1 cure is the existence of the latently infected viral reservoir that gives rise to rebound viremia upon cessation of ART. Here, we tested a novel combination approach of latency reversal with AZD5582 and clearance with bispecific HIVxCD3 DART molecules in SHIV.C.CH505-infected, ART-suppressed rhesus macaques. We demonstrate that the DART molecules were not capable of clearing infected cells in vivo, attributed to the lack of quantifiable latency reversal in this model with low levels of persistent SHIV DNA prior to intervention as well as DART molecule immunogenicity.


Asunto(s)
Alquinos/farmacología , Antirretrovirales/farmacología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/farmacología , Infecciones por VIH/tratamiento farmacológico , Oligopéptidos/farmacología , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Viremia/tratamiento farmacológico , Animales , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/virología , Femenino , Regulación de la Expresión Génica , Infecciones por VIH/genética , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , VIH-1/crecimiento & desarrollo , VIH-1/inmunología , Humanos , Proteínas Inhibidoras de la Apoptosis/antagonistas & inhibidores , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/inmunología , Macaca mulatta , FN-kappa B/genética , FN-kappa B/inmunología , Virus Reordenados/efectos de los fármacos , Virus Reordenados/crecimiento & desarrollo , Virus Reordenados/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/genética , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/efectos de los fármacos , Virus de la Inmunodeficiencia de los Simios/crecimiento & desarrollo , Virus de la Inmunodeficiencia de los Simios/inmunología , Carga Viral/efectos de los fármacos , Viremia/genética , Viremia/inmunología , Viremia/virología , Latencia del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos
16.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33087463

RESUMEN

Mother-to-child transmission of human immunodeficiency virus type 1 (HIV-1) continues to cause new pediatric cases of infection through breastfeeding, a setting where it is not always possible to initiate early antiretroviral therapy (ART). Without novel interventions that do not rely on daily ART, HIV-1-infected children face lifelong medications to control infection. A detailed analysis of virus persistence following breast milk transmission of HIV-1 and ART has not been performed. Here, we used infant rhesus macaques orally infected with simian/human immunodeficiency virus (SHIV) (SHIV.C.CH505) to identify cellular and anatomical sites of virus persistence under ART. Viral DNA was detected at similar levels in blood and tissue CD4+ T cells after a year on ART, with virus in blood and lymphoid organs confirmed to be replication competent. Viral RNA/DNA ratios were elevated in rectal CD4+ T cells compared to those of other sites (P ≤ 0.0001), suggesting that the gastrointestinal tract is an active site of virus transcription during ART-mediated suppression of viremia. SHIV.C.CH505 DNA was detected in multiple CD4+ T cell subsets, including cells with a naive phenotype (CD45RA+ CCR7+ CD95-). While the frequency of naive cells harboring intact provirus was lower than in memory cells, the high abundance of naive cells in the infant CD4+ T cell pool made them a substantial source of persistent viral DNA (approximately 50% of the total CD4+ T cell reservoir), with an estimated 1:2 ratio of intact provirus to total viral DNA. This viral reservoir profile broadens our understanding of virus persistence in a relevant infant macaque model and provides insight into targets for cure-directed approaches in the pediatric population.IMPORTANCE Uncovering the sanctuaries of the long-lived HIV-1 reservoir is crucial to develop cure strategies. Pediatric immunity is distinct from that of adults, which may alter where the reservoir is established in infancy. Thus, it is important to utilize pediatric models to inform cure-directed approaches for HIV-1-infected children. We used an infant rhesus macaque model of HIV-1 infection via breastfeeding to identify key sites of viral persistence under antiretroviral therapy (ART). The gastrointestinal tract was found to be a site for low-level viral transcription during ART. We also show that naive CD4+ T cells harbored intact provirus and were a major contributor to blood and lymphoid reservoir size. This is particularly striking, as memory CD4+ T cells are generally regarded as the main source of latent HIV/simian immunodeficiency virus (SIV) infection of adult humans and rhesus macaques. Our findings highlight unique features of reservoir composition in pediatric infection that should be considered for eradication efforts.


Asunto(s)
Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/veterinaria , Macaca mulatta , Enfermedades de los Monos/virología , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Administración Oral , Animales , Animales Recién Nacidos , ADN Viral/análisis , Reservorios de Enfermedades , Femenino , Infecciones por VIH/inmunología , Infecciones por VIH/transmisión , VIH-1 , Masculino , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/transmisión , ARN Viral/análisis , Virus Reordenados/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga Viral
17.
J Virol ; 93(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31217249

RESUMEN

Simian-human immunodeficiency viruses (SHIVs) have been utilized to test vaccine efficacy and characterize mechanisms of viral transmission and pathogenesis. However, the majority of SHIVs currently available have significant limitations in that they were developed using sequences from chronically HIV-infected individuals or uncommon HIV subtypes or were optimized for the macaque model by serially passaging the engineered virus in vitro or in vivo Recently, a newly developed SHIV, SHIV.C.CH505.375H.dCT (SHIV.CH505), which incorporates vpu-env (gp140) sequences from a transmitted/founder HIV-1 subtype C strain, was shown to retain attributes of primary HIV-1 strains. However, a comprehensive analysis of the immunopathology that results from infection with this virus, especially in critical tissue compartments like the intestinal mucosa, has not been completed. In this study, we evaluated the viral dynamics and immunopathology of SHIV.CH505 in rhesus macaques. In line with previous findings, we found that SHIV.CH505 is capable of infecting and replicating efficiently in rhesus macaques, resulting in peripheral viral kinetics similar to that seen in pathogenic SIV and HIV infection. Furthermore, we observed significant and persistent depletions of CCR5+ and CCR6+ CD4+ T cells in mucosal tissues, decreases in CD4+ T cells producing Th17 cell-associated cytokines, CD8+ T cell dysfunction, and alterations of B cell and innate immune cell function, indicating that SHIV.CH505 elicits intestinal immunopathology typical of SIV/HIV infection. These findings suggest that SHIV.CH505 recapitulates the early viral replication dynamics and immunopathogenesis of HIV-1 infection of humans and thus can serve as a new model for HIV-1 pathogenesis, treatment, and prevention research.IMPORTANCE The development of chimeric SHIVs has been instrumental in advancing our understanding of HIV-host interactions and allowing for in vivo testing of novel treatments. However, many of the currently available SHIVs have distinct drawbacks and are unable to fully reflect the features characteristic of primary SIV and HIV strains. Here, we utilize rhesus macaques to define the immunopathogenesis of the recently developed SHIV.CH505, which was designed without many of the limitations of previous SHIVs. We observed that infection with SHIV.CH505 leads to peripheral viral kinetics and mucosal immunopathogenesis comparable with those caused by pathogenic SIV and HIV. Overall, these data provide evidence of the value of SHIV.CH505 as an effective model of SIV/HIV infection and an important tool that can be used in future studies, including preclinical testing of new therapies or prevention strategies.


Asunto(s)
Ingeniería Genética/métodos , VIH/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Modelos Animales de Enfermedad , Infecciones por VIH/virología , VIH-1/inmunología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/virología , Macaca mulatta/virología , Modelos Biológicos , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Carga Viral/inmunología , Replicación Viral/fisiología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/genética , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología
18.
Am J Transplant ; 19(9): 2533-2542, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30768838

RESUMEN

The advent of direct-acting antiviral therapy for hepatitis C virus (HCV) has generated tremendous interest in transplanting organs from HCV-infected donors. We conducted a single-arm trial of orthotopic heart transplantation (OHT) from HCV-infected donors into uninfected recipients, followed by elbasvir/grazoprevir treatment after recipient HCV was first detected (NCT03146741; sponsor: Merck). We enrolled OHT candidates aged 40-65 years; left ventricular assist device (LVAD) support and liver disease were exclusions. We accepted hearts from HCV-genotype 1 donors. From May 16, 2017 to May 10, 2018, 20 patients consented for screening and enrolled, and 10 (median age 52.5 years; 80% male) underwent OHT. The median wait from UNOS opt-in for HCV nucleic-acid-test (NAT)+ donor offers to OHT was 39 days (interquartile range [IQR] 17-57). The median donor age was 34 years (IQR 31-37). Initial recipient HCV RNA levels ranged from 25 IU/mL to 40 million IU/mL, but all 10 patients had rapid decline in HCV NAT after elbasvir/grazoprevir treatment. Nine recipients achieved sustained virologic response at 12 weeks (SVR-12). The 10th recipient had a positive cross-match, experienced antibody-mediated rejection and multi-organ failure, and died on day 79. No serious adverse events occurred from HCV transmission or treatment. These short-term results suggest that HCV-negative candidates transplanted with HCV-infected hearts have acceptable outcomes.


Asunto(s)
Insuficiencia Cardíaca/cirugía , Trasplante de Corazón , Hepatitis C/transmisión , Adulto , Anciano , Amidas , Antivirales/uso terapéutico , Benzofuranos/administración & dosificación , Carbamatos , Ciclopropanos , Femenino , Genotipo , Rechazo de Injerto , Insuficiencia Cardíaca/complicaciones , Insuficiencia Cardíaca/virología , Trasplante de Corazón/efectos adversos , Corazón Auxiliar , Hepacivirus/genética , Hepatitis C/tratamiento farmacológico , Humanos , Imidazoles/administración & dosificación , Masculino , Persona de Mediana Edad , Periodo Posoperatorio , Quinoxalinas/administración & dosificación , ARN Viral/análisis , Sulfonamidas , Respuesta Virológica Sostenida , Factores de Tiempo , Obtención de Tejidos y Órganos , Resultado del Tratamiento , Carga Viral , Listas de Espera
19.
N Engl J Med ; 375(21): 2037-2050, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27959728

RESUMEN

BACKGROUND: The discovery of potent and broadly neutralizing antibodies (bNAbs) against human immunodeficiency virus (HIV) has made passive immunization a potential strategy for the prevention and treatment of HIV infection. We sought to determine whether passive administration of VRC01, a bNAb targeting the HIV CD4-binding site, can safely prevent or delay plasma viral rebound after the discontinuation of antiretroviral therapy (ART). METHODS: We conducted two open-label trials (AIDS Clinical Trials Group [ACTG] A5340 and National Institutes of Health [NIH] 15-I-0140) of the safety, side-effect profile, pharmacokinetic properties, and antiviral activity of VRC01 in persons with HIV infection who were undergoing interruption of ART. RESULTS: A total of 24 participants were enrolled, and one serious alcohol-related adverse event occurred. Viral rebound occurred despite plasma VRC01 concentrations greater than 50 µg per milliliter. The median time to rebound was 4 weeks in the A5340 trial and 5.6 weeks in the NIH trial. Study participants were more likely than historical controls to have viral suppression at week 4 (38% vs. 13%, P=0.04 by a two-sided Fisher's exact test in the A5340 trial; and 80% vs. 13%, P<0.001 by a two-sided Fisher's exact test in the NIH trial) but the difference was not significant at week 8. Analyses of virus populations before ART as well as before and after ART interruption showed that VRC01 exerted pressure on rebounding virus, resulting in restriction of recrudescent viruses and selection for preexisting and emerging antibody neutralization-resistant virus. CONCLUSIONS: VRC01 slightly delayed plasma viral rebound in the trial participants, as compared with historical controls, but it did not maintain viral suppression by week 8. In the small number of participants enrolled in these trials, no safety concerns were identified with passive immunization with a single bNAb (VRC01). (Funded by the National Institute of Allergy and Infectious Diseases and others; ACTG A5340 and NIH 15-I-0140 ClinicalTrials.gov numbers, NCT02463227 and NCT02471326 .).


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , VIH/aislamiento & purificación , Viremia/prevención & control , Adulto , Anciano , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales/farmacocinética , Anticuerpos Neutralizantes/efectos adversos , Anticuerpos ampliamente neutralizantes , Femenino , VIH/genética , Anticuerpos Anti-VIH , Infecciones por VIH/virología , Estudio Históricamente Controlado , Humanos , Masculino , Persona de Mediana Edad , Filogenia , ARN Viral/sangre , Carga Viral
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda