Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Molecules ; 28(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36615488

RESUMEN

H3PO4/KOH combined solution is proposed as a new effective activation agent for activated carbon production from rice husk. Several activated carbon samples were produced by using different volumes of the utilized acid and alkali individually, in addition to the combined solution. FTIR results indicated that the mixed agent partially decomposed the chemical compounds on the rice husk char surface, resulting in an increase in the surface area. Moreover, XRD and EDS analyses showed the presence of a considerable amount of amorphous silica. Electrochemical measurements concluded that the volume of the activation agent solution should be optimized for both single and mixed activation agents. Numerically, for 0.3 g treated rice husk char, the maximum specific capacitance was observed at 7, 10 and 14 mL of H3PO4, KOH (3 M) and mixed (1:1 by volume) activation agents, respectively; the determined specific capacitance values were 73.5, 124.2 and 241.3 F/g, respectively. A galvanostatic charging/discharging analysis showed an approximate symmetrical triangular shape with linear voltage versus time profile which indicates very good electrochemical performance as an electrode in the supercapacitors application. The stability of the proposed activated carbon was checked by performing a cyclic voltammetry measurement for 1000 cycles at 2 mV/s and for 30,000 cycles at 10 mV/s. The results indicate an excellent specific capacitance retention, as no losses were observed.


Asunto(s)
Carbón Orgánico , Oryza , Oryza/química , Álcalis , Electrodos , Capacidad Eléctrica
2.
J Environ Manage ; 206: 228-235, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29073581

RESUMEN

This study investigates three different strategies for anode surface treatment by doping superficial nitrogen groups on the anode surfaces of carbon cloth (CC) and carbon paper (CP). The chosen anodes were hydrothermally treated in the presence of an ammonia solution (AST), a mixture of nitric acid and sulfuric acid (AHT), and solid urea (UT) at 180 °C for 3 h. The utilized characterization techniques confirmed doping of nitrogen on the anode surfaces and a decrease in the oxygen-bonded carbon content. Furthermore, the results showed that the power and current densities were significantly affected by the surface modification techniques. Interestingly, the AST strategy achieved the highest power density of 159.3 mW-2 and 91.6 mWm-2, which revealed an increase in power of 115% and 56.8% for CC-AST and CP-AST, respectively. Additionally, the maximum coulombic efficiencies were 63.9% and 27.5% for the CC-AST and CP-AST anodes, respectively. Overall, these results highlight the significance of anode surface modification for enhancing MFC performance to generate electricity and treat actual wastewater.


Asunto(s)
Fuentes de Energía Bioeléctrica , Aguas Residuales , Carbono , Electricidad , Electrodos
3.
J Nanosci Nanotechnol ; 17(2): 1280-286, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29683303

RESUMEN

In this work, Co/Cr nanoparticles-decorated carbon nanofibers were studied as a platinum-free catalyst for electrooxidation of ethanol in the alkaline medium. The investigated nano composites were prepared by simple, high yield and effective technique; electrospinning of cobalt acetate, chromium acetate and polyvinyl alcohol as a polymer precursor at 20 kV followed by calcination under inert atmosphere at 900 °C for 2 h. The suitable physicochemical characterizations such as XRD, SEM, TEM, TEM mapping, Line TEM-EDX and FE-SEM indicated the formation of pure CoCr nanoparticles allocated in/on carbon nanofibers. Electro catalytic activity measurements showed that the investigated Co­Cr carbon nanofibers can be effectively utilized in ethanol electrooxidation in 1 mol/l KOH solution. The observed current density was 105 mA/cm2 which is considered high value for non-precious electrocatalyst. Also, study the influence of Cr content in Cr­Co alloy toward ethanol oxidation was investigated to obtain the most effective composition. The suitable Cr concentration found to be 10% of Co content.

4.
Bioprocess Biosyst Eng ; 40(8): 1151-1161, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28526899

RESUMEN

This study introduces activated carbon (AC) as an effective anode for microbial fuel cells (MFCs) using real industrial wastewater without treatment or addition of external microorganism mediators. Inexpensive activated carbon is introduced as a proper electrode alternative to carbon cloth and carbon paper materials, which are considered too expensive for the large-scale application of MFCs. AC has a porous interconnected structure with a high bio-available surface area. The large surface area, in addition to the high macro porosity, facilitates the high performance by reducing electron transfer resistance. Extensive characterization, including surface morphology, material chemistry, surface area, mechanical strength and biofilm adhesion, was conducted to confirm the effectiveness of the AC material as an anode in MFCs. The electrochemical performance of AC was also compared to other anodes, i.e., Teflon-treated carbon cloth (CCT), Teflon-treated carbon paper (CPT), untreated carbon cloth (CC) and untreated carbon paper (CP). Initial tests of a single air-cathode MFC display a current density of 1792 mAm-2, which is approximately four times greater than the maximum value of the other anode materials. COD analyses and Coulombic efficiency (CE) measurements for AC-MFC show the greatest removal of organic compounds and the highest CE efficiency (60 and 71%, respectively). Overall, this study shows a new economical technique for power generation from real industrial wastewater with no treatment and using inexpensive electrode materials.


Asunto(s)
Electrodos , Fuentes de Energía Bioeléctrica , Carbono , Electricidad , Aguas Residuales
5.
Sci Rep ; 14(1): 1460, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233435

RESUMEN

This manuscript investigates the influence of the chemical activation step order and process parameters on the specific capacitance of activated carbon derived from rice husk. The chemical activation was performed either before or after the carbonization step, using phosphoric acid (H3PO4) and potassium hydroxide (KOH) as activating agents. For activation before carbonization, the carbonization process was conducted at various temperatures (600, 750, 850, and 1050 °C). On the other hand, for activation after carbonization, the effect of the volume of the chemical agent solution was studied, with 0, 6, 18, 21, 24, and 30 mL/g of phosphoric acid and 0, 18, 30, 45, 60, and 90 mL/g of 3.0 M KOH solution. The results revealed that in the case of chemical activation before carbonization, the optimum temperature for maximizing specific capacitance was determined to be 900 °C. Conversely, in the case of chemical activation after carbonization, the optimal volumes of the chemical agent solutions were found to be 30 mL/g for phosphoric acid (H3PO4) and 21 mL/g for potassium hydroxide (KOH). Moreover, it was observed that utilizing phosphoric acid treatment before the carbonization step leads to an 21% increase in specific capacitance, attributed to the retention of inorganic compounds, particularly silica (SiO2). Conversely, when rice husks were treated with KOH after the carbonization step, the specific capacitance was found to be doubled compared to treatment with KOH prior to the carbonization step due to embedding of SiO2 and KHCO3 inorganic constituents. This study provides valuable insights into the optimization of the chemical activation step order and process parameters for enhanced specific capacitance in rice husk-derived activated carbon. These findings contribute to the development of high-performance supercapacitors using rice husk as a sustainable and cost-effective precursor material.

6.
RSC Adv ; 14(5): 3163-3177, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38249675

RESUMEN

Herein, we explored the utilization of graphitized mango seeds as 3D-packed anodes in microbial fuel cells (MFCs) powered by sewage wastewater. Mango seeds were graphitized at different temperatures (800 °C, 900 °C, 1000 °C, and 1100 °C) and their effectiveness as anodes was evaluated. Surface morphology analysis indicated that the proposed anode was characterized by layered branches and micro-sized deep holes, facilitating enhanced biofilm formation and microorganism attachment. Maximum power densities achieved in the MFCs utilizing the mango seed-packed anodes graphitized at 1100 °C and 1000 °C were 2170.8 ± 90 and 1350.6 ± 125 mW m-2, respectively. Furthermore, the weight of the graphitized seed anode demonstrated a positive correlation with the generated power density and cell potential. Specifically, MFCs fabricated with 9 g and 6 g anodes achieved maximum power densities of 2170.8 ± 90 and 1800.5 ± 40 mW m-2, respectively. A continuous mode air cathode MFC employing the proposed graphitized mango anode prepared at 1100 °C and operated at a flow rate of 2 L h-1 generated a stable current density of approximately 12 A m-2 after 15 hours of operation, maintaining its stability for 75 hours. Furthermore, a chemical oxygen demand (COD) removal efficiency of 85% was achieved in an assembled continuous mode MFC. Considering that the proposed MFC was driven by sewage wastewater without the addition of external microorganisms, atmospheric oxygen was used as the electron acceptor through an air cathode mode, agricultural biomass waste was employed for the preparation of the anode, and a higher power density was achieved (2170.8 mW m-2) compared to reported values; it is evident that the proposed graphitized mango seed anode exhibits high efficiency for application in MFCs.

7.
Water Sci Technol ; 68(5): 974-81, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24037146

RESUMEN

In this work, effective, cheap and scalable methodology is introduced to treat oily wastewater. The water produced from car-wash processes was utilized as a model because it has various pollutants - oil, lubricants, detergents, solid particles, etc. The results showed that the turbidity and chemical oxygen demand (COD) values dramatically decrease by using the proposed treatment process, which consists of coagulation, flocculation, sand filtration, and oxidation followed by sand as well as activated carbon filtration. Moreover, the operating conditions were optimized. Without adjustment of the pH value of car-wash wastewater, it was found that 200 ppm of ferric chloride, as a coagulant, and 1 ppm of potassium permanganate, as an oxidant, are the optimum doses. The COD and turbidity values of the final treated wastewater were reduced by almost 88 and 100%, respectively. A prototype with 15 L capacity was designed and fabricated to investigate the scaling up and continuity of the proposed treatment strategy. The results were very promising and indicated that the introduced methodology can be industrially applied.


Asunto(s)
Eliminación de Residuos Líquidos/métodos , Análisis de la Demanda Biológica de Oxígeno , Filtración , Floculación , Concentración de Iones de Hidrógeno
8.
PLoS One ; 18(6): e0287424, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37343028

RESUMEN

In heterogeneous catalytic processes, immobilization of the functional material over a proper support is a vital solution for reusing and/or avoiding a secondary pollution problem. The study introduces a novel approach for immobilizing R25 NPs on the surface of silica granules using hydrothermal treatment followed by calcination process. Due to the privileged characteristics of the subcritical water, during the hydrothermal treatment process, the utilized R25 NPs were partially dissolved and precipitated on the surface of the silica granules. Calcination at high temperature (700°C) resulted in improving the attachment forces. The structure of the newly proposed composite was approved by 2D and 3D optical microscope images, XRD and EDX analyses. The functionalized silica granules were used in the form of a packed bed for continuous removal of methylene blue dye. The results indicated that the TiO2:sand ratio has a considerable effect on the shape of the dye removal breakthrough curve as the exhaustion point, corresponding to ~ 95% removal, was 12.3, 17.4 and 21.3 min for 1:20, 1:10 and 1:5 metal oxides ratio, respectively. Furthermore, the modified silica granules could be exploited as a photocatalyst for hydrogen generation from sewage wastewaters under direct sunlight with a good rate; 75×10-3 mmol/s. Interestingly, after the ease separation of the used granules, the performance was not affected. Based on the obtained results, the 170°C is the optimum hydrothermal treatment temperature. Overall, the study opens a new avenue for immobilization of functional semiconductors on the surface of sand granules.


Asunto(s)
Dióxido de Silicio , Purificación del Agua , Dióxido de Silicio/química , Arena , Titanio/química , Purificación del Agua/métodos , Hidrógeno , Catálisis
9.
Front Chem ; 11: 1301172, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38025057

RESUMEN

This manuscript is dedicated to a comprehensive exploration of the multifaceted challenge of fast electron-hole recombination in titanium dioxide photocatalysis, with a primary focus on its critical role in advancing the field of water photo splitting. To address this challenge, three prominent approaches-Schottky barriers, Z-scheme systems, and type II heterojunctions-were rigorously investigated for their potential to ameliorate TiO2's photocatalytic performance toward water photo splitting. Three distinct dopants-silver, cadmium oxide, and zinc oxide-were strategically employed. This research also delved into the dynamic interplay between these dopants, analyzing the synergetic effects that arise from binary and tertiary doping configurations. The results concluded that incorporation of Ag, CdO, and ZnO dopants effectively countered the fast electron-hole recombination problem in TiO2 NPs. Ag emerged as a critical contributor at higher temperatures, significantly enhancing photocatalytic performance. The photocatalytic system exhibited a departure from Arrhenius behavior, with an optimal temperature of 40°C. Binary doping systems, particularly those combining CdO and ZnO, demonstrated exceptional photocatalytic activity at lower temperatures. However, the ternary doping configuration involving Ag, CdO, and ZnO proved to be the most promising, surpassing many functional materials. In sum, this study offers valuable insights into how Schottky barriers, Z-scheme systems, and type II heterojunctions, in conjunction with specific dopants, can overcome the electron-hole recombination challenge in TiO2-based photocatalysis. The results underscore the potential of the proposed ternary doping system to revolutionize photocatalytic water splitting for efficient green hydrogen production, significantly advancing the field's understanding and potential for sustainable energy applications.

10.
PLoS One ; 18(3): e0282869, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36952561

RESUMEN

Efficient, chemically stable and cheap materials are highly required as electrodes in the ions-electrosorption-based technologies such as supercapacitors and capacitive deionization desalination. Herein, facile preparation of titanium oxide-incorporated activated carbon using cheap precursors is introduced for this regard. The proposed material was synthesized using the solubility power of the subcritical water to partially dissolve titanium oxide particles to be adsorbable on the surface of the activated carbon. Typically, an aqueous suspension of commercial TiO2 particles (P25) and activated carbon was autoclaved at 180°C for 10 h. The physiochemical characterizations indicated high and uniform distribution of the inorganic material on the surface of the activated carbon. The ionic electrosorption capacity was highly improved as the specific capacitance increased from 76 to 515 F/g for the pristine and modified activated carbon, respectively at 5 mV/s in 0.5 M sodium chloride solution. However, the weight content of titanium oxide has to be adjusted; 0.01% is the optimum value. Overall, the study introduces novel and simple one-pot procedure to synthesis powerful titanium oxide-based functional materials from cheap solid titanium precursor without utilization of additional chemicals.


Asunto(s)
Carbón Orgánico , Titanio , Agua , Iones/química , Electrodos
11.
Sci Rep ; 13(1): 8693, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248303

RESUMEN

The treatment of real beet sugar mill effluent by a modified electrocoagulation process is proposed. An innovative design of an electromagnetic field-enhanced electrochemical cell consisting of a tubular screen roll anode and two cathodes (an inner and outer cathode) has been used. Different parameters have been investigated including current density, effluent concentration, NaCl concentration, rpm, number of screen layers per anode, and the effect of addition and direction of an electromagnetic field. The results showed that, under the optimum conditions, current density of 3.13 A/m2, two screens per anode, NaCl concentration of 12 g/l, and rotation speed of 120 rpm, the percentage of color removal was 85.5% and the electrical energy consumption was 3.595 kWh/m3. However, the presence of an electromagnetic field distinctly enhanced the energy consumption and the color removal percentage. Numerically, applying the magnetic field resulted in performing a color removal efficiency of 97.7% using a power consumption of 2.569 KWh/m3 which is considered a distinct achievement in industrial wastewater treatment process. The strong enhancement in color removal using a low power consumption significantly reduced the required treatment cost; the estimated treatment cost was 0.00017 $/h.m2. This design has proven to be a promising one for the continuous treatment of beet sugar industrial effluents and to be a competitor to the currently available techniques.

12.
Polymers (Basel) ; 15(11)2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37299229

RESUMEN

Molybdenum carbide co-catalyst and carbon nanofiber matrix are suggested to improve the nickel activity toward methanol electrooxidation process. The proposed electrocatalyst has been synthesized by calcination electrospun nanofiber mats composed of molybdenum chloride, nickel acetate, and poly (vinyl alcohol) under vacuum at elevated temperatures. The fabricated catalyst has been characterized using XRD, SEM, and TEM analysis. The electrochemical measurements demonstrated that the fabricated composite acquired specific activity for methanol electrooxidation when molybdenum content and calcination temperature were tuned. In terms of the current density, the highest performance is attributed to the nanofibers obtained from electrospun solution having 5% molybdenum precursor compared to nickel acetate as a current density of 107 mA/cm2 was generated. The process operating parameters have been optimized and expressed mathematically using the Taguchi robust design method. Experimental design has been employed in investigating the key operating parameters of methanol electrooxidation reaction to obtain the highest oxidation current density peak. The main effective operating parameters of the methanol oxidation reaction are Mo content in the electrocatalyst, methanol concentration, and reaction temperature. Employing Taguchi's robust design helped to capture the optimum conditions yielding the maximum current density. The calculations revealed that the optimum parameters are as follows: Mo content, 5 wt.%; methanol concentration, 2.65 M; and reaction temperature, 50 °C. A mathematical model has been statistically derived to describe the experimental data adequately with an R2 value of 0. 979. The optimization process indicated that the maximum current density can be identified statistically at 5% Mo, 2.0 M methanol concentration, and 45 °C operating temperature.

13.
Front Chem ; 11: 1286572, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075493

RESUMEN

Microbial fuel cells (MFCs) offer a dual solution of generating electrical energy from organic pollutants-laden wastewater while treating it. This study focuses on enhancing MFC performance through innovative electrode design. Three-dimensional (3D) anodes, created from corncobs and mango seeds via controlled graphitization, achieved remarkable power densities. The newly developed electrode configurations were evaluated within sewage wastewater-driven MFCs without the introduction of external microorganisms or prior treatment of the wastewater. At 1,000°C and 1,100°C graphitization temperatures, corncob and mango seed anodes produced 1,963 and 2,171 mW/m2, respectively, nearly 20 times higher than conventional carbon cloth and paper anodes. An advanced cathode composed of an activated carbon-carbon nanotube composite was introduced, rivaling expensive platinum-based cathodes. By optimizing the thermal treatment temperature and carbon nanotube content of the proposed cathode, comparable or superior performance to standard Pt/C commercial cathodes was achieved. Specifically, MFCs assembled with corncob anode with the proposed and standard Pt/C cathodes reached power densities of 1,963.1 and 2,178.6 mW/m2, respectively. Similarly, when utilizing graphitized mango seeds at 1,100°C, power densities of 2,171 and 2,151 mW/m2 were achieved for the new and standard cathodes, respectively. Furthermore, in continuous operation with a flow rate of 2 L/h, impressive chemical oxygen demand (COD) removal rates of 77% and 85% were achieved with corncob and mango seed anodes, respectively. This work highlights the significance of electrode design for enhancing MFC efficiency in electricity generation and wastewater treatment.

14.
Appl Microbiol Biotechnol ; 93(2): 743-51, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21761207

RESUMEN

In this study, a biological evaluation of the antimicrobial activity of Zn-doped titania nanofibers was carried out using Escherichia coli ATCC 52922 (Gram negative) and Staphylococcus aureus ATCC 29231 (Gram positive) as model organisms. The utilized Zn-doped titania nanofibers were prepared by the electrospinning of a sol-gel composed of zinc nitrate, titanium isopropoxide, and polyvinyl acetate; the obtained electrospun nanofibers were vacuum dried at 80°C and then calcined at 600°C. The physicochemical properties of the synthesized nanofibers were determined by X-ray diffraction pattern, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, electron probe microanalysis, thermogravimetry, and transmission electron microscopy (TEM). The antibacterial activity and the acting mechanism of Zn-doped titania nanofibers against bacteria were investigated by calculation of minimum inhibitory concentration and analyzing the morphology of the bacterial cells following the treatment with nanofibers solution. Our investigations reveal that the lowest concentration of Zn-doped titania nanofibers solution inhibiting the growth of S. aureus ATCC 29231 and E. coli ATCC 52922 strains is found to be 0.4 and 1.6 µg/ml, respectively. Furthermore, Bio-TEM analysis demonstrated that the exposure of the selected microbial strains to the nanofibers led to disruption of the cell membranes and leakage of the cytoplasm. In conclusion, the combined results suggested doping promotes antimicrobial effect; synthesized nanofibers possess a very large surface-to-volume ratio and may damage the structure of the bacterial cell membrane, as well as depress the activity of the membranous enzymes which cause bacteria to die in due course.


Asunto(s)
Antibacterianos/farmacología , Escherichia coli/efectos de los fármacos , Nanofibras , Staphylococcus aureus/efectos de los fármacos , Titanio/farmacología , Zinc/farmacología , Membrana Celular/fisiología , Membrana Celular/ultraestructura , Escherichia coli/ultraestructura , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Staphylococcus aureus/ultraestructura
15.
Sci Rep ; 12(1): 22574, 2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36585465

RESUMEN

In this study, molybdenum carbide and carbon were investigated as co-catalysts to enhance the nickel electro-activity toward urea oxidation. The proposed electrocatalyst has been formulated in the form of nanofibrous morphology to exploit the advantage of the large axial ratio. Typically, calcination of electropsun polymeric nanofibers composed of poly(vinyl alcohol), molybdenum chloride and nickel acetate under vacuum resulted in producing good morphology molybdenum carbide/Ni NPs-incorporated carbon nanofibers. Investigation on the composition and morphology of the proposed catalyst was achieved by XRD, SEM, XPS, elemental mapping and TEM analyses which concluded formation of molybdenum carbide and nickel nanoparticles embedded in a carbon nanofiber matrix. As an electrocatalyst for urea oxidation, the electrochemical measurements indicated that the proposed composite has a distinct activity when the molybdenum content is optimized. Typically, the nanofibers prepared from electrospun nanofibers containing 25 wt% molybdenum precursor with respect to nickel acetate revealed the best performance. Numerically, using 0.33 M urea in 1.0 M KOH, the obtained current densities were 15.5, 44.9, 52.6, 30.6, 87.9 and 17.6 mA/cm2 for nanofibers prepared at 850 °C from electropsun mats containing 0, 5, 10, 15, 25 and 35 molybdenum chloride, respectively. Study the synthesis temperature of the proposed composite indicated that 1000 °C is the optimum calcination temperature. Kinetic studies indicated that electrooxidation reaction of urea does not follow Arrhenius's law.

16.
Polymers (Basel) ; 15(1)2022 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-36616535

RESUMEN

Novel (Ca, Mg)CO3&SiO2 NPs-decorated multilayer graphene sheets could be successfully prepared from corn stalk pith using a simple alkaline hydrothermal treatment process followed by calcination in an inert atmosphere. The produced nanocomposite was characterized by SEM, EDX, TEM, FTIR, and XRD analytical techniques, which confirm the formation of multilayer graphene sheets decorated by inorganic nanoparticles. The nanocomposite shows efficient activity as a photocatalyst for water-splitting reactions under visible light. The influence of preparation parameter variations, including the alkaline solution concentration, hydrothermal temperature, reaction time, and calcination temperature, on the hydrogen evolution rate was investigated by preparing many samples at different conditions. The experimental work indicated that treatment of the corn stalk pith hydrothermally by 1.0 M KOH solution at 170 °C for 3 h and calcinating the obtained solid at 600 °C results in the maximum hydrogen production rate. A value of 43.35 mmol H2/gcat.min has been obtained associated with the energy-to-hydrogen conversion efficiency of 9%. Overall, this study opens a new avenue for extracting valuable nanocatalysts from biomass wastes to be exploited in hot applications such as hydrogen generation from water photo-splitting under visible light radiation.

17.
RSC Adv ; 12(24): 15486-15492, 2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35685185

RESUMEN

It is agreed that low mass transfer and poor reaction kinetics are the main reasons behind the low power density of microbial fuel cells (MFCs). Microscale MFCs can introduce a marvelous solution for the mass transfer dilemma. However, the volumetric power density and coulombic efficiency of present microscale MFCs are still limited due to the poor reaction kinetics. The size, shape, chemical properties and material of the electrodes are essential parameters controlling the reaction kinetics. In this study, a 3D carbon nanofiber disk is introduced as an effective anode for a single-chamber air-cathode micro-sized MFC as it improved the reaction kinetics. The proposed electrode was fabricated by a judicious combination of the electrospinning technique and thermal treatment. Owing to the intercalation of the microorganisms in the carbon nanofiber skeleton, compared to many previous reports, high power and current densities of 8.1 Wm-2 and 44.9 Am-2, respectively, were obtained from the 19.6 µL single-chamber air-cathode MFC. However, the thickness of the carbon nanofiber layer has to be optimized by adjusting the electrospinning time. The power density observed from a 10 min electrospinning time-based anode outperformed the 5- and 20 min ones by 1.5 and 2 times, respectively.

18.
Polymers (Basel) ; 14(3)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35160513

RESUMEN

In this study, hydrogen generation was performed by utilizing methylene blue dye as visible-light photosensitizer while the used catalyst is working as a transfer bridge for the electrons to H+/H2 reaction. Silica NPs-incorporated TiO2 nanofibers, which have a more significant band gap and longer electrons lifetime compared to pristine TiO2, were used as a catalyst. The nanofibers were prepared by electrospinning of amorphous SiO2 NPs/titanium isopropoxide/poly (vinyl acetate)/N, N-dimethylformamide colloid. Physicochemical characterizations confirmed the preparation of well morphology SiO2-TiO2 nanofibers with a bandgap energy of 3.265 eV. Under visible light radiation, hydrogen and oxygen were obtained in good stoichiometric rates (9.5 and 4.7 mL/min/gcat, respectively) without any considerable change in the dye concentration, which proves the successful exploitation of the dye as a photosensitizer. Under UV irradiation, SiO2 NPs incorporation distinctly enhanced the dye photodegradation, as around 91 and 94% removal efficiency were obtained from TiO2 nanofibers containing 4 and 6 wt% of the used dopant, respectively, within 60 min.

19.
PLoS One ; 17(10): e0276097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36256606

RESUMEN

Nanofibrous morphology and the doping technique can overcome the problem of electron/hole fast recombination and improve the activity of titanium oxide-based photocatalysts. In this study, nanoparticulate and nanofibrous forms of CdTiO3-incorporated TiO2 were synthesized with different cadmium contents; the morphology and composition were determined by SEM, TEM, EDX, and XRD techniques. The nanomorphology, cadmium content, and reaction temperature of Cd-doped TiO2 nanostructures were found to be strongly affect the hydrogen production rate. Nanofibrous morphology improves the rate of hydrogen evolution by around 10 folds over the rate for nanoparticles due to electron confinement in 0D nanostructures. The average rates of hydrogen production for samples of 0.5 wt.% Cd are 0.7 and 16.5 ml/gcat.min for nanoparticles and nanofibers, respectively. On the other hand, cadmium doping resulted in increasing the hydrogen production rate from 9.6 to 19.7 ml/gcat.min for pristine and Cd-doped (2 wt%) TiO2 nanofibers, respectively. May be the formation of type I heterostructures between the TiO2 matrix and CdTiO3 nanoparticles is the main reason for the observed enhancement of photocatalytic activity due to the strong suppressing of electron/holes recombination process. Consequently, the proposed photocatalyst could be exploited to produce hydrogen from scavenger-free solution. Varying reaction temperature suggests that hydrogen evolution over the proposed catalyst is incompatible with the Arrhenius equation. In particular, reaction temperature was found to have a negative influence on photocatalytic activity. This work shows the prospects for using CdTiO3 as a co-catalyst in photon-induced water splitting and indicates a substantial enhancement in the rate of hydrogen production upon using the proposed photocatalyst in nanofibrous morphology.


Asunto(s)
Nanoestructuras , Agua , Agua/química , Cadmio , Titanio/química , Nanoestructuras/química , Luz , Hidrógeno/química
20.
Polymers (Basel) ; 14(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458291

RESUMEN

Co-doped carbon nanofiber mats can be prepared by the addition of cobalt acetate to the polyacrylonitrile/DMF electrospun solution. Wastewater obtained from food industries was utilized as the anolyte as well as microorganisms as the source in single-chamber batch mode microbial fuel cells. The results indicated that the single Co-free carbon nanofiber mat was not a good anode in the used microbial fuel cells. However, the generated power can be distinctly enhanced by using double active layers of pristine carbon nanofiber mats or a single layer Co-doped carbon nanofiber mat as anodes. Typically, after 24 h batching time, the estimated generated power densities were 10, 92, and 121 mW/m2 for single, double active layers, and Co-doped carbon nanofiber anodes, respectively. For comparison, the performance of the cell was investigated using carbon cloth and carbon paper as anodes, the observed power densities were smaller than the introduced modified anodes at 58 and 62 mW/m2, respectively. Moreover, the COD removal and Columbic efficiency were calculated for the proposed anodes as well as the used commercial ones. The results further confirm the priority of using double active layer or metal-doped carbon nanofiber anodes over the commercial ones. Numerically, the calculated COD removals were 29.16 and 38.95% for carbon paper and carbon cloth while 40.53 and 45.79% COD removals were obtained with double active layer and Co-doped carbon nanofiber anodes, respectively. With a similar trend, the calculated Columbic efficiencies were 26, 42, 52, and 71% for the same sequence.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda