Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Langmuir ; 39(18): 6301-6315, 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37097742

RESUMEN

The size-dependent phase stability of γ-Al2O3 was studied by large-scale molecular dynamics simulations over a wide temperature range from 300 to 900 K. For the γ-Al2O3 crystal, a bulk transformation to α-Al2O3 by an FCC-to-HCP transition of the O sublattice is still kinetically hindered at 900 K. However, local distortions of the FCC O-sublattice by the formation of quasi-octahedral Al local coordination spheres become thermally activated, as driven by the partial covalency of the Al-O bond. On the contrary, spherical γ-Al2O3 nanoparticles (NPs) (with sizes of 6 and 10 nm) undergo a crystalline-to-amorphous transformation at 900 K, which starts at the reconstructed surface and propagates into the core through collective displacements of anions and cations, resulting in the formation of 7- and 8-fold local coordination spheres of Al. In parallel, the reconstructed Al-enriched surface is separated from the stoichiometric core by a diffuse Al-depleted transition region. This compositional heterogeneity creates an imbalance of charges inside the NP, which induces a net attractive Coulombic force that is strong enough to reverse the initial stress state in the NP core from compressive to tensile. These findings disclose the delicate interplay between lattice distortions, stresses, and space-charge regions in oxide nanosystems. A fundamental explanation for the reported expansion of metal-oxide NPs with decreasing size is provided, which has significant implications for, e.g., heterogeneous catalysis, NP sintering, and additive manufacturing of NP-reinforced metal matrix composites.

2.
Langmuir ; 35(27): 8984-8995, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31244247

RESUMEN

Cisplatin ( cis-diaminedichloroplatinum(II), CDDP) plays a crucial role in the treatment of various malignant tumors. However, its clinical efficacy and applicability are restricted by issues of toxicity and resistance. Here, for drug delivery purposes, the outer surface of MCM-41 mesoporous silica nanoparticles (MSNs) was functionalized with poly(ethylene glycol) ( Mw = 10 000 g/mol) or low-molecular-weight ( Mw = 1800 g/mol) branched polyethyleneimine (PEI). Given the strong affinity of sulfur for platinum, thiol-functionalized MSNs were synthesized for comparison by co-condensation with (3-mercaptopropyl)triethoxysilane. CDDP loading was performed either by adsorption or impregnation in aqueous media without the use of dimethyl sulfoxide as a solubilizer. CDDP loading capacities obtained by impregnation were higher than those obtained by adsorption and varied from 3.9 to 16.1 wt %, depending on the functional group. Loaded nanomaterials were characterized by scanning electron microscopy, scanning transmission electron microscopy-high-angle annular dark-field, and Raman spectroscopy. Depending on the functional groups, platinum-based species were either dispersed in the nanomaterials as nanocrystals or uniformly distributed as molecular species. The spectral signature of CDDP was strongly modified when platinum species were homogeneously distributed within the nanomaterials. Preliminary drug release studies performed at 37 °C showed that the behavior of CDDP-loaded MSNs strongly depends on the nature of the present functional groups. Among the functionalization routes investigated in this paper, PEI-based functionalization showed the most promising results for further applications in controlled drug release with the absence of burst release and a sustained release over 72 h.


Asunto(s)
Antineoplásicos/química , Cisplatino/química , Nanopartículas/química , Dióxido de Silicio/química , Estructura Molecular , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
3.
Nanomaterials (Basel) ; 13(14)2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37513145

RESUMEN

Nanometric multilayers composed of immiscible Ag and Ni metals were investigated by means of molecular dynamics simulations. The semi-coherent interface between Ag and Ni was examined at low temperatures by analyzing in-plane strain and defect formation. The relaxation of the interface under annealing conditions was also considered. With increasing temperature, a greater number of atomic planes participated in the interface, resulting in enhanced mobility of Ag and Ni atoms, as well as partial dissolution of Ni within the amorphous Ag. To mimic polycrystalline layers with staggered grains, a system with a triple junction between a silver single layer and two grains of nickel was examined. At high temperatures (900 K and 1000 K), the study demonstrated grain boundary grooving. The respective roles of Ni and Ag mobilities in the first steps of grooving dynamics were established. At 1100 K, a temperature close but still below the melting point of Ag, the Ag layer underwent a transition to an amorphous/premelt state, with Ni grains rearranging themselves in contact with the amorphous layer.

4.
J Phys Chem B ; 111(23): 6457-68, 2007 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-17508733

RESUMEN

Self-propagating high-temperature synthesis of intermetallic compounds is of wide interest. We consider reactions in a binary system in which the rise and fall of the temperature during the reaction is such that one of the reacting metals melts but not the other. For such a system, using the phase diagram of the binary system, we present a general theory that describes the reaction taking place in a single solid particle of one component surrounded by the melt of the second component. The theory gives us a set of kinetic equations that describe the propagation of the phase interfaces in the solid particle and the change in composition of the melt that surrounds it. In this article, we derive a set of equations for one- and two-layer systems in which each layer is a binary compound in the phase diagram. The system of equations is numerically solved for Al-Ni to illustrate the applicability of the theory. The method presented here is general and, depending on the complexity of the phase diagram, it could be used to obtain similar equations for systems with more layers.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda