Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 118
Filtrar
1.
Nervenarzt ; 95(6): 539-543, 2024 Jun.
Artículo en Alemán | MEDLINE | ID: mdl-38483548

RESUMEN

BACKGROUND: As the most rapidly increasing neurodegenerative disease worldwide, Parkinson's disease is highly relevant to society. Successful treatment requires active patient participation. Patient education has been successfully implemented for many chronic diseases, such as diabetes and could also provide people with Parkinson's disease with skills to manage the disease better and to participate in shared decision making. MATERIAL AND METHODS: To prepare the implementation of a concept for patient education for people with Parkinson's disease, a structured consensus study was conducted and a pilot project formatively evaluated. The structured consensus study included experts from all over Germany. It consisted of two online surveys and an online consensus conference. The formative evaluation was conducted as three focus groups. Transcripts were evaluated using content-structuring qualitative content analysis. RESULTS: From the consensus procedure 59 consented statements emerged, mainly regarding the contents of a patient school and a group size of 6-8 persons. Only two statements could not be consented. The formative evaluation detected a tendency towards a positive attitude for a digital training format and a very positive evaluation of the contents. DISCUSSION: Overall, important recommendations for a patient school can be drawn from this study. The following subjects require further investigation: format, inclusion criteria, group composition and inclusion of caregivers.


Asunto(s)
Enfermedad de Parkinson , Educación del Paciente como Asunto , Enfermedad de Parkinson/terapia , Humanos , Educación del Paciente como Asunto/métodos , Alemania , Proyectos Piloto , Participación del Paciente , Consenso , Instrucción por Computador/métodos , Curriculum , Grupos Focales , Masculino , Toma de Decisiones Conjunta
2.
Ann Neurol ; 91(5): 602-612, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35150172

RESUMEN

OBJECTIVE: The objective of this study was to obtain individual clinical and neuroimaging data of patients undergoing deep brain stimulation (DBS) for essential tremor (ET) from 5 different European centers to identify predictors of outcome and to identify an optimal stimulation site. METHODS: We analyzed retrospectively baseline covariates, pre- and postoperative clinical tremor scores (for 12 months) as well as individual imaging data from 119 patients to obtain individual electrode positions and stimulation volumes. Individual imaging and clinical data were used to calculate a probabilistic stimulation map in normalized space using voxel-wise statistical analysis. Finally, we used this map to train a classifier to predict tremor improvement. RESULTS: Probabilistic mapping of stimulation effects yielded a statistically significant cluster that was associated with a tremor improvement >50%. This cluster of optimal stimulation extended from the posterior subthalamic area to the ventralis intermedius nucleus and coincided with a normative structural connectivity-based cerebellothalamic tract (CTT). The combined features "distance between the stimulation volume and the significant cluster" and "CTT activation" were used as a predictor of tremor improvement. This correctly classified a >50% tremor improvement with a sensitivity of 89% and a specificity of 57%. INTERPRETATION: Our multicenter ET probabilistic stimulation map identified an area of optimal stimulation along the course of the CTT. The results of this study are mainly descriptive until confirmed in independent datasets, ideally through prospective testing. This target will be made openly available and may be used to guide surgical planning and for computer-assisted programming of DBS in the future. ANN NEUROL 2022;91:602-612.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Estimulación Encefálica Profunda/métodos , Temblor Esencial/terapia , Humanos , Estudios Prospectivos , Estudios Retrospectivos , Resultado del Tratamiento , Temblor/terapia
3.
Mov Disord ; 38(6): 1077-1082, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36750755

RESUMEN

BACKGROUND: Skin biopsy is a potential tool for the premortem confirmation of an α-synucleinopathy. OBJECTIVE: The aim was to assess the aggregation assay real-time quaking-induced conversion (RT-QuIC) of skin biopsy lysates to confirm isolated rapid eye movement sleep behavior disorder (iRBD) as an α-synucleinopathy. METHODS: Skin biopsies of patients with iRBD, Parkinson's disease (PD), and controls were analyzed using RT-QuIC and immunohistochemical detection of phospho-α-synuclein. RESULTS: α-Synuclein aggregation was detected in 97.4% of iRBD patients (78.4% of iRBD biopsies), 87.2% of PD patients (70% of PD biopsies), and 13% of controls (7.9% of control biopsies), with a higher seeding activity in iRBD compared to PD. RT-QuIC was more sensitive but less specific than immunohistochemistry. CONCLUSIONS: Dermal RT-QuIC is a sensitive method to detect α-synuclein aggregation in iRBD, and high seeding activity may indicate a strong involvement of dermal nerve fibers in these patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Sinucleinopatías , Humanos , alfa-Sinucleína , Sinucleinopatías/diagnóstico , Trastorno de la Conducta del Sueño REM/diagnóstico , Trastorno de la Conducta del Sueño REM/patología , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/patología , Biopsia
4.
Mov Disord ; 38(2): 212-222, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461899

RESUMEN

BACKGROUND: The EARLYSTIM trial demonstrated for Parkinson's disease patients with early motor complications that deep brain stimulation of the subthalamic nucleus (STN-DBS) and best medical treatment (BMT) was superior to BMT alone. OBJECTIVE: This prospective, ancillary study on EARLYSTIM compared changes in blinded speech intelligibility assessment between STN-DBS and BMT over 2 years, and secondary outcomes included non-speech oral movements (maximum phonation time [MPT], oral diadochokinesis), physician- and patient-reported assessments. METHODS: STN-DBS (n = 102) and BMT (n = 99) groups underwent assessments on/off medication at baseline and 24 months (in four conditions: on/off medication, ON/OFF stimulation-for STN-DBS). Words and sentences were randomly presented to blinded listeners, and speech intelligibility rate was measured. Statistical analyses compared changes between the STN-DBS and BMT groups from baseline to 24 months. RESULTS: Over the 2-year period, changes in speech intelligibility and MPT, as well as patient-reported outcomes, were not different between groups, either off or on medication or OFF or ON stimulation, but most outcomes showed a nonsignificant trend toward worsening in both groups. Change in oral diadochokinesis was significantly different between STN-DBS and BMT groups, on medication and OFF STN-DBS, with patients in the STN-DBS group performing slightly worse than patients under BMT only. A signal for clinical worsening with STN-DBS was found for the individual speech item of the Unified Parkinson's Disease Rating Scale, Part III. CONCLUSION: At this early stage of the patients' disease, STN-DBS did not result in a consistent deterioration in blinded speech intelligibility assessment and patient-reported communication, as observed in studies of advanced Parkinson's Disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/complicaciones , Estudios Prospectivos , Núcleo Subtalámico/fisiología , Movimiento , Inteligibilidad del Habla/fisiología , Estimulación Encefálica Profunda/métodos , Resultado del Tratamiento
5.
Eur J Neurol ; 30(12): 3979-3981, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37584071

RESUMEN

Although-considering the risk-benefit ratio-botulinum neurotoxin A (BoNT/A) is unequivocally recommended to treat severe neurological diseases such as dystonia, this has not yet been determined for its endoscopic intragastric injection aimed at weight reduction in obesity. However, severe adverse effects of intragastric BoNT/A had not yet been reported, prompting some European countries to endorse its (off-label) use and treat patients transnationally. We here present three cases of botulism after intragastric BoNT/A injections for obesity treatment in a Turkish hospital. Patients presented with cranial nerve affection, bulbar symptoms, and descending paresis, and benefited from treatment with BoNT antitoxin and pyridostigmine. We assume that iatrogenic botulism was induced by overdosing in combination with toxin spread via the highly vascularized gastric tissue. Of note, within a few weeks, more than 80 cases of iatrogenic botulism were reported across Europe after identical intragastric BoNT/A injections. These cases demonstrate the risks of BoNT/A injections if they are not applied within the limits of evidence-based medicine. There is a need for international guidelines to define the indication and a safe dosing scheme, especially in the context of medical tourism.


Asunto(s)
Toxinas Botulínicas Tipo A , Botulismo , Humanos , Botulismo/etiología , Botulismo/inducido químicamente , Toxinas Botulínicas Tipo A/efectos adversos , Enfermedad Iatrogénica , Pérdida de Peso , Obesidad
6.
BMC Neurol ; 23(1): 372, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37853327

RESUMEN

BACKGROUND: The effectiveness of Deep Brain Stimulation (DBS) therapy for Parkinson's disease can be limited by side-effects caused by electrical current spillover into structures adjacent to the target area. The objective of the STEEred versus RING-mode DBS for Parkinson's disease (STEERING) study is to investigate if directional DBS for Parkinson's disease results in a better clinical outcome when compared to ring-mode DBS. METHODS: The STEERING study is a prospective multi-centre double-blind randomised crossover trial. Inclusion criteria are Parkinson's disease, subthalamic nucleus DBS in a 'classic' ring-mode setting for a minimum of six months, and optimal ring-mode settings have been established. Participants are categorised into one of two subgroups according to their clinical response to the ring-mode settings as 'responders' (i.e., patient with a satisfactory effect of ring-mode DBS) or 'non-responder' (i.e., patient with a non-satisfactory effect of ring-mode DBS). A total of 64 responders and 38 non-responders will be included (total 102 patients). After an optimisation period in which an optimal directional setting is found, participants are randomised to first receive ring-mode DBS for 56 days (range 28-66) followed by directional DBS for 56 days (28-66) or vice-versa. The primary outcome is the difference between ring-mode DBS and directional DBS settings on the Movement Disorders Society Unified Parkinson's Disease Rating Scale - Motor Evaluation (MDS-UPDRS-ME) in the off-medication state. Secondary outcome measures consist of MDS-UPDRS-ME in the on-medication state, MDS-UPDRS Activities of Daily Living, MDS-UPDRS Motor Complications-Dyskinesia, disease related quality of life measured with the Parkinson's Disease Questionnaire 39, stimulation-induced side-effects, antiparkinsonian medication use, and DBS-parameters. Participants' therapy preference is measured at the end of the study. Outcomes will be analysed for both responder and non-responder groups, as well as for both groups pooled together. DISCUSSION: The STEERING trial will provide insights into whether or not directional DBS should be standardly used in all Parkinson's disease DBS patients or if directional DBS should only be used in a case-based approach. TRIAL REGISTRATION: This trial was registered on the Netherlands Trial Register, as trial NL6508 ( NTR6696 ) on June 23, 2017.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/complicaciones , Estudios Prospectivos , Estimulación Encefálica Profunda/métodos , Calidad de Vida , Actividades Cotidianas , Estudios Cruzados , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudios Multicéntricos como Asunto
7.
Sensors (Basel) ; 23(20)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37896714

RESUMEN

Clinical rating scales for tremors have significant limitations due to low resolution, high rater dependency, and lack of applicability in outpatient settings. Reliable, quantitative approaches for assessing tremor severity are warranted, especially evaluating treatment effects, e.g., of deep brain stimulation (DBS). We aimed to investigate how different accelerometry metrics can objectively classify tremor amplitude of Essential Tremor (ET) and tremor in Parkinson's Disease (PD). We assessed 860 resting and postural tremor trials in 16 patients with ET and 25 patients with PD under different DBS settings. Clinical ratings were compared to different metrics, based on either spectral components in the tremorband or pure acceleration, derived from simultaneous triaxial accelerometry captured at the index finger and wrist. Nonlinear regression was applied to a training dataset to determine the relationship between accelerometry and clinical ratings, which was then evaluated in a holdout dataset. All of the investigated accelerometry metrics could predict clinical tremor ratings with a high concordance (>70%) and substantial interrater reliability (Cohen's weighted Kappa > 0.7) in out-of-sample data. Finger-worn accelerometry performed slightly better than wrist-worn accelerometry. We conclude that triaxial accelerometry reliably quantifies resting and postural tremor amplitude in ET and PD patients. A full release of our dataset and software allows for implementation, development, training, and validation of novel methods.


Asunto(s)
Temblor Esencial , Enfermedad de Parkinson , Humanos , Temblor/diagnóstico , Reproducibilidad de los Resultados , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/terapia , Temblor Esencial/diagnóstico , Acelerometría/métodos
8.
Neuromodulation ; 26(2): 340-347, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35219570

RESUMEN

OBJECTIVES: Whether treatment response in patients with Parkinson disease depends on brain atrophy is insufficiently understood. The goal of this study is to identify specific atrophy patterns associated with response to dopaminergic therapy and deep brain stimulation. MATERIALS AND METHODS: In this study, we analyzed the association of gray matter brain atrophy patterns, as identified by voxel-based morphometry, with acute response to levodopa (N = 118) and subthalamic nucleus deep brain stimulation (N = 39). Motor status was measured as a change in points on the Unified Parkinson's Disease Rating Scale III score. Baseline values were obtained before surgery, after cessation of dopaminergic medication for at least 12 hours; response to medication was assessed after administration of a standardized dose of levodopa. Response to deep brain stimulation was measured three months after surgery in the clinical condition after withdrawal of dopaminergic medication. RESULTS: Although frontoparietal brain gray matter loss was associated with subpar response to deep brain stimulation, there was no significant link between brain atrophy and response to levodopa. CONCLUSION: We conclude that response to deep brain stimulation relies on gray matter integrity; hence, gray matter loss may present a risk factor for poor response to deep brain stimulation and may be considered when making decision regarding clinical practice.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Levodopa/uso terapéutico , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/tratamiento farmacológico , Encéfalo/diagnóstico por imagen , Núcleo Subtalámico/diagnóstico por imagen , Núcleo Subtalámico/fisiología , Resultado del Tratamiento
9.
Ann Neurol ; 89(2): 315-326, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33201528

RESUMEN

OBJECTIVE: This study was undertaken to gain insights into structural networks associated with stimulation-induced dysarthria (SID) and to predict stimulation-induced worsening of intelligibility in essential tremor patients with bilateral thalamic deep brain stimulation (DBS). METHODS: Monopolar reviews were conducted in 14 essential tremor patients. Testing included determination of SID thresholds, intelligibility ratings, and a fast syllable repetition task. Volumes of tissue activated (VTAs) were calculated to identify discriminative fibers for stimulation-induced worsening of intelligibility in a structural connectome. The resulting fiber-based atlas structure was then validated in a leave-one-out design. RESULTS: Fibers determined as discriminative for stimulation-induced worsening of intelligibility were mainly connected to the ipsilateral precentral gyrus as well as to both cerebellar hemispheres and the ipsilateral brain stem. In the thalamic area, they ran laterally to the thalamus and posteromedially to the subthalamic nucleus, in close proximity, mainly anterolaterally, to fibers beneficial for tremor control as published by Al-Fatly et al in 2019. The overlap of the respective clinical stimulation setting's VTAs with these fibers explained 62.4% (p < 0.001) of the variance of stimulation-induced change in intelligibility in a leave-one-out analysis. INTERPRETATION: This study demonstrates that SID in essential tremor patients is associated with both motor cortex and cerebellar connectivity. Furthermore, the identified fiber-based atlas structure might contribute to future postoperative programming strategies to achieve optimal tremor control without speech impairment in essential tremor patients with thalamic DBS. ANN NEUROL 2021;89:315-326.


Asunto(s)
Cerebelo/fisiopatología , Estimulación Encefálica Profunda/efectos adversos , Disartria/etiología , Temblor Esencial/terapia , Corteza Motora/fisiopatología , Inteligibilidad del Habla , Anciano , Ataxia/fisiopatología , Conectoma , Disartria/diagnóstico por imagen , Disartria/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Contracción Muscular/fisiología , Vías Nerviosas/fisiopatología , Núcleos Talámicos Ventrales
10.
Mov Disord ; 37(2): 291-301, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35112384

RESUMEN

BACKGROUND: Subthalamic nucleus deep brain stimulation (STN-DBS) effectively treats motor symptoms and quality of life (QoL) of advanced and fluctuating early Parkinson's disease. Little is known about the relation between electrode position and changes in symptom control and ultimately QoL. OBJECTIVES: The relation between the stimulated part of the STN and clinical outcomes, including the motor score of the Unified Parkinson's Disease Rating Scale (UPDRS) and the quality-of-life questionnaire, was assessed in a subcohort of the EARLYSTIM study. METHODS: Sixty-nine patients from the EARLYSTIM cohort who underwent DBS, with a comprehensive clinical characterization before and 24 months after surgery, were included. Intercorrelations of clinical outcome changes, correlation between the affected functional parts of the STN, and changes in clinical outcomes were investigated. We further calculated sweet spots for different clinical parameters. RESULTS: Improvements in the UPDRS III and Parkinson's Disease Questionnaire (PDQ-39) correlated positively with the extent of the overlap with the sensorimotor STN. The sweet spots for the UPDRS III (x = 11.6, y = -13.1, z = -6.3) and the PDQ-39 differed (x = 14.8, y = -12.4, z = -4.3) ~3.8 mm. CONCLUSIONS: The main influence of DBS on QoL is likely mediated through the sensory-motor basal ganglia loop. The PDQ sweet spot is located in a posteroventral spatial location in the STN territory. For aspects of QoL, however, there was also evidence of improvement through stimulation of the other STN subnuclei. More research is necessary to customize the DBS target to individual symptoms of each patient. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Núcleo Subtalámico , Humanos , Enfermedad de Parkinson/terapia , Calidad de Vida , Núcleo Subtalámico/fisiología , Resultado del Tratamiento
11.
Neuromodulation ; 25(6): 877-887, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33476474

RESUMEN

OBJECTIVES: Open questions remain regarding the optimal target, or sweetspot, for deep brain stimulation (DBS) in, for example, Parkinson's disease. Previous studies introduced different methods of mapping DBS effects to determine sweetspots. While having a direct impact on surgical targeting and postoperative programming in DBS, these methods so far have not been compared. MATERIALS AND METHODS: This study investigated five previously published DBS mapping approaches regarding their potential to correctly identify a predefined target. Methods were investigated in silico in eight different use-case scenarios, which incorporated different types of clinical data, noise, and differences in underlying neuroanatomy. Dice coefficients were calculated to determine the overlap between identified sweetspots and the predefined target. Additionally, out-of-sample predictive capabilities were assessed using the amount of explained variance R2. RESULTS: The five investigated methods resulted in highly variable sweetspots. Methods based on voxel-wise statistics against average outcomes showed the best performance overall. While predictive capabilities were high, even in the best of cases Dice coefficients remained limited to values around 0.5, highlighting the overall limitations of sweetspot identification. CONCLUSIONS: This study highlights the strengths and limitations of current approaches to DBS sweetspot mapping. Those limitations need to be taken into account when considering the clinical implications. All future approaches should be investigated in silico before being applied to clinical data.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Estimulación Encefálica Profunda/métodos , Humanos , Enfermedad de Parkinson/terapia
12.
Ann Neurol ; 87(6): 962-975, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32239535

RESUMEN

OBJECTIVE: Subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson's disease (PD) not only stimulates focal target structures but also affects distributed brain networks. The impact this network modulation has on non-motor DBS effects is not well-characterized. By focusing on the affective domain, we systematically investigate the impact of electrode placement and associated structural connectivity on changes in depressive symptoms following STN-DBS, which have been reported to improve, worsen, or remain unchanged. METHODS: Depressive symptoms before and after STN-DBS surgery were documented in 116 patients with PD from 3 DBS centers (Berlin, Queensland, and Cologne). Based on individual electrode reconstructions, the volumes of tissue activated (VTAs) were estimated and combined with normative connectome data to identify structural connections passing through VTAs. Berlin and Queensland cohorts formed a training and cross-validation dataset used to identify structural connectivity explaining change in depressive symptoms. The Cologne data served as the test-set for which depressive symptom change was predicted. RESULTS: Structural connectivity was linked to depressive symptom change under STN-DBS. An optimal connectivity map trained on the Berlin cohort could predict changes in depressive symptoms in Queensland patients and vice versa. Furthermore, the joint training-set map predicted changes in depressive symptoms in the independent test-set. Worsening of depressive symptoms was associated with left prefrontal connectivity. INTERPRETATION: Fibers connecting the electrode with left prefrontal areas were associated with worsening of depressive symptoms. Our results suggest that for the left STN-DBS lead, placement impacting fibers to left prefrontal areas should be avoided to maximize improvement of depressive symptoms. ANN NEUROL 2020;87:962-975.


Asunto(s)
Estimulación Encefálica Profunda/efectos adversos , Depresión/etiología , Depresión/psicología , Vías Nerviosas/diagnóstico por imagen , Corteza Prefrontal/diagnóstico por imagen , Núcleo Subtalámico , Afecto , Anciano , Mapeo Encefálico , Conectoma , Depresión/diagnóstico por imagen , Electrodos Implantados , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/psicología , Enfermedad de Parkinson/terapia , Estudios Retrospectivos , Núcleo Subtalámico/diagnóstico por imagen , Tomografía Computarizada por Rayos X
13.
J Neurol Neurosurg Psychiatry ; 92(12): 1313-1318, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34510000

RESUMEN

BACKGROUND: The effects of subthalamic stimulation (subthalamic nucleus-deep brain stimulation, STN-DBS) on impulsive and compulsive behaviours (ICB) in Parkinson's disease (PD) are understudied. OBJECTIVE: To investigate clinical predictors of STN-DBS effects on ICB. METHODS: In this prospective, open-label, multicentre study in patients with PD undergoing bilateral STN-DBS, we assessed patients preoperatively and at 6-month follow-up postoperatively. Clinical scales included the Questionnaire for Impulsive-Compulsive Disorders in PD-Rating Scale (QUIP-RS), PD Questionnaire-8, Non-Motor Symptom Scale (NMSS), Unified PD Rating Scale in addition to levodopa-equivalent daily dose total (LEDD-total) and dopamine agonists (LEDD-DA). Changes at follow-up were analysed with Wilcoxon signed-rank test and corrected for multiple comparisons (Bonferroni method). We explored predictors of QUIP-RS changes using correlations and linear regressions. Finally, we dichotomised patients into 'QUIP-RS improvement or worsening' and analysed between-group differences. RESULTS: We included 55 patients aged 61.7 years±8.4 with 9.8 years±4.6 PD duration. QUIP-RS cut-offs and psychiatric assessments identified patients with preoperative ICB. In patients with ICB, QUIP-RS improved significantly. However, we observed considerable interindividual variability of clinically relevant QUIP-RS outcomes as 27.3% experienced worsening and 29.1% an improvement. In post hoc analyses, higher baseline QUIP-RS and lower baseline LEDD-DA were associated with greater QUIP-RS improvements. Additionally, the 'QUIP-RS worsening' group had more severe baseline impairment in the NMSS attention/memory domain. CONCLUSIONS: Our results show favourable ICB outcomes in patients with higher preoperative ICB severity and lower preoperative DA doses, and worse outcomes in patients with more severe baseline attention/memory deficits. These findings emphasise the need for comprehensive non-motor and motor symptoms assessments in patients undergoing STN-DBS. TRIAL REGISTRATION NUMBER: DRKS00006735.


Asunto(s)
Conducta Compulsiva/psicología , Estimulación Encefálica Profunda , Conducta Impulsiva/fisiología , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiopatología , Anciano , Conducta Compulsiva/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/psicología , Estudios Prospectivos , Calidad de Vida
14.
Mov Disord ; 36(9): 2187-2192, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34096652

RESUMEN

BACKGROUND: Motor response to dopaminergic therapy is a characteristic of patients with Parkinson's disease (PD). Whether nondopaminergic neurotransmitters contribute to treatment response is uncertain. OBJECTIVES: The aim of this study is to determine whether putaminal y-aminobutyric acid (GABA) levels are associated with dopaminergic motor response. METHODS: We assessed putaminal GABA levels in 19 PD patients and 13 healthy controls (HCs) utilizing ultra-high field proton magnetic resonance spectroscopy. Motor performance was evaluated using the Movement Disorder Society-Unified Parkinson's Disease Rating Scale, Part III, in the ON and OFF states. Statistical analysis comprised group comparisons, correlation analysis, and multiple linear regression. RESULTS: In PD, GABA levels were significantly higher compared to HCs (1.50 ± 0.26 mM vs. 1.26 ± 0.31 mM, P = 0.022). Furthermore, GABA levels were independent predictors of absolute and relative dopaminergic treatment response. CONCLUSIONS: Our findings indicate that elevated putaminal GABA levels are associated with worse dopaminergic response in PD, emphasizing the essential role of nondopaminergic neurotransmitters in motor response. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Parkinson , Aminobutiratos , Dopamina , Humanos , Enfermedad de Parkinson/tratamiento farmacológico
15.
Stereotact Funct Neurosurg ; 99(2): 167-170, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33049735

RESUMEN

BACKGROUND: Directional deep brain stimulation (DBS) enlarges the therapeutic window by increasing side-effect thresholds and improving clinical benefits. To determine the optimal stimulation settings and interpret clinical observations, knowledge of the lead orientation in relation to the patient's anatomy is required. OBJECTIVE: To determine if directional leads remain in a fixed orientation after implantation or whether orientation changes over time. METHOD: Clinical records of 187 patients with directional DBS electrodes were screened for CT scans in addition to the routine postoperative CT. The orientation angle of each electrode at a specific point in time was reconstructed from CT artifacts using the DiODe algorithm implemented in Lead-DBS. The orientation angles over time were compared with the originally measured orientations from the routine postoperative CT. RESULTS: Multiple CT scans were identified in 18 patients and the constancy of the orientation angle was determined for 29 leads at 48 points in time. The median time difference between the observations and the routine postoperative CT scan was 82 (range 1-811) days. The mean difference of the orientation angles compared to the initial measurement was -1.1 ± 3.9° (range -7.6 to 8.7°). Linear regression showed no relevant drift of the absolute value of the orientation angle over time (0.8°/year, adjusted R2: 0.040, p = 0.093). CONCLUSION: The orientation of directional leads was stable and showed no clinically relevant changes either in the first weeks after implantation or over longer periods of time.


Asunto(s)
Estimulación Encefálica Profunda , Algoritmos , Artefactos , Humanos , Tomografía Computarizada por Rayos X
16.
Stereotact Funct Neurosurg ; 99(1): 65-74, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33080600

RESUMEN

BACKGROUND: Directional leads are increasingly used in deep brain stimulation. They allow shaping the electrical field in the axial plane. These new possibilities increase the complexity of programming. Thus, optimized programming approaches are needed to assist clinical testing and to obtain full clinical benefit. OBJECTIVES: This simulation study investigates to what extent the electrical field can be shaped by directional steering to compensate for lead malposition. METHOD: Binary volumes of tissue activated (VTA) were simulated, by using a finite element method approach, for different amplitude distributions on the three directional electrodes. VTAs were shifted from 0 to 2 mm at different shift angles with respect to the lead orientation, to determine the best compensation of a target volume. RESULTS: Malpositions of 1 mm can be compensated with the highest gain of overlap with directional leads. For larger shifts, an improvement of overlap of 10-30% is possible, depending on the stimulation amplitude and shift angle of the lead. Lead orientation and shift determine the amplitude distribution of the electrodes. CONCLUSION: To get full benefit from directional leads, both the shift angle as well as the shift to target volume are required to choose the correct amplitude distribution on the electrodes. Current directional leads have limitations when compensating malpositions >1 mm; however, they still outperform conventional leads in reducing overstimulation. Further, their main advantage probably lies in the reduction of side effects. Databases like the one from this simulation could serve for optimized lead programming algorithms in the future.


Asunto(s)
Algoritmos , Simulación por Computador , Estimulación Encefálica Profunda/métodos , Electrodos Implantados , Análisis de Elementos Finitos , Estimulación Encefálica Profunda/instrumentación , Humanos
17.
Ann Neurol ; 86(4): 527-538, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31376171

RESUMEN

OBJECTIVE: To investigate whether functional sweet spots of deep brain stimulation (DBS) in the subthalamic nucleus (STN) can predict motor improvement in Parkinson disease (PD) patients. METHODS: Stimulation effects of 449 DBS settings in 21 PD patients were clinically and quantitatively assessed through standardized monopolar reviews and mapped into standard space. A sweet spot for best motor outcome was determined using voxelwise and nonparametric permutation statistics. Two independent cohorts were used to investigate whether stimulation overlap with the sweet spot could predict acute motor outcome (10 patients, 163 settings) and long-term overall Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) improvement (63 patients). RESULTS: Significant clusters for suppression of rigidity and akinesia, as well as for overall motor improvement, resided around the dorsolateral border of the STN. Overlap of the volume of tissue activated with the sweet spot for overall motor improvement explained R2 = 37% of the variance in acute motor improvement, more than triple what was explained by overlap with the STN (R2 = 9%) and its sensorimotor subpart (R2 = 10%). In the second independent cohort, sweet spot overlap explained R2 = 20% of the variance in long-term UPDRS-III improvement, which was equivalent to the variance explained by overlap with the STN (R2 = 21%) and sensorimotor STN (R2 = 19%). INTERPRETATION: This study is the first to predict clinical improvement of parkinsonian motor symptoms across cohorts based on local DBS effects only. The new approach revealed a distinct sweet spot for STN DBS in PD. Stimulation overlap with the sweet spot can predict short- and long-term motor outcome and may be used to guide DBS programming. ANN NEUROL 2019;86:527-538.


Asunto(s)
Estimulación Encefálica Profunda , Rigidez Muscular/terapia , Enfermedad de Parkinson/terapia , Núcleo Subtalámico/fisiología , Bases de Datos Factuales , Humanos , Rigidez Muscular/complicaciones , Enfermedad de Parkinson/complicaciones , Trastornos Psicomotores/complicaciones , Trastornos Psicomotores/terapia , Resultado del Tratamiento
18.
J Neurol Neurosurg Psychiatry ; 91(7): 687-694, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32371534

RESUMEN

OBJECTIVE: To examine 36-month effects of bilateral subthalamic nucleus deep brain stimulation (STN-DBS) on non-motor symptoms (NMS) compared with standard-of-care medical treatment (MED) in Parkinson's disease (PD). METHODS: Here we report the 36-month follow-up of a prospective, observational, controlled, international multicentre study of the NILS cohort. Assessments included NMSScale (NMSS), PDQuestionnaire-8 (PDQ-8), Scales for Outcomes in PD (SCOPA)-motor examination, -activities of daily living, and -complications, and levodopa equivalent daily dose (LEDD). Propensity score matching resulted in a pseudo-randomised sub-cohort balancing baseline demographic and clinical characteristics between the STN-DBS and MED groups. Within-group longitudinal outcome changes were analysed using Wilcoxon signed-rank and between-group differences of change scores with Mann-Whitney U test. Strength of clinical responses was quantified with Cohen's effect size. In addition, bivariate correlations of change scores were explored. RESULTS: Propensity score matching applied on the cohort of 151 patients (STN-DBS n=67, MED n=84) resulted in a well-balanced sub-cohort including 38 patients per group. After 36 months, STN-DBS significantly improved NMSS, PDQ-8, SCOPA-motor examination and -complications and reduced LEDD. Significant between-group differences, all favouring STN-DBS, were found for NMSS, SCOPA-motor complications, LEDD (large effects), motor examination and PDQ-8 (moderate effects). Furthermore, significant differences were found for the sleep/fatigue, urinary (large effects) and miscellaneous NMSS domains (moderate effects). NMSS total and PDQ-8 change scores correlated significantly. CONCLUSIONS: This study provides Class IIb evidence for beneficial effects of STN-DBS on NMS at 36-month follow-up which also correlated with quality of life improvements. This highlights the importance of NMS for DBS outcomes assessments.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Fatiga/fisiopatología , Enfermedad de Parkinson/terapia , Sueño/fisiología , Núcleo Subtalámico/fisiopatología , Actividades Cotidianas , Anciano , Antiparkinsonianos/uso terapéutico , Terapia Combinada , Femenino , Estudios de Seguimiento , Humanos , Levodopa/uso terapéutico , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/fisiopatología , Estudios Prospectivos , Resultado del Tratamiento
19.
Eur J Nucl Med Mol Imaging ; 47(12): 2911-2922, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32318783

RESUMEN

PURPOSE: Second-generation tau radiotracers for use with positron emission tomography (PET) have been developed for visualization of tau deposits in vivo. For several ß-amyloid and first-generation tau-PET radiotracers, it has been shown that early-phase images can be used as a surrogate of neuronal injury. Therefore, we investigated the performance of early acquisitions of the novel tau-PET radiotracer [18F]PI-2620 as a potential substitute for [18F]fluorodeoxyglucose ([18F]FDG). METHODS: Twenty-six subjects were referred with suspected tauopathies or overlapping parkinsonian syndromes (Alzheimer's disease, progressive supranuclear palsy, corticobasal syndrome, multi-system atrophy, Parkinson's disease, multi-system atrophy, Parkinson's disease, frontotemporal dementia) and received a dynamic [18F]PI-2620 tau-PET (0-60 min p.i.) and static [18F]FDG-PET (30-50 min p.i.). Regional standardized uptake value ratios of early-phase images (single frame SUVr) and the blood flow estimate (R1) of [18F]PI-2620-PET were correlated with corresponding quantification of [18F]FDG-PET (global mean/cerebellar normalization). Reduced tracer uptake in cortical target regions was also interpreted visually using 3-dimensional stereotactic surface projections by three more and three less experienced readers. Spearman rank correlation coefficients were calculated between early-phase [18F]PI-2620 tau-PET and [18F]FDG-PET images for all cortical regions and frequencies of disagreement between images were compared for both more and less experienced readers. RESULTS: Highest agreement with [18F]FDG-PET quantification was reached for [18F]PI-2620-PET acquisition from 0.5 to 2.5 min p.i. for global mean (lowest R = 0.69) and cerebellar scaling (lowest R = 0.63). Correlation coefficients (summed 0.5-2.5 min SUVr & R1) displayed strong agreement in all cortical target regions for global mean (RSUVr 0.76, RR1 = 0.77) and cerebellar normalization (RSUVr 0.68, RR1 = 0.68). Visual interpretation revealed high regional correlations between early-phase tau-PET and [18F]FDG-PET. There were no relevant differences between more and less experienced readers. CONCLUSION: Early-phase imaging of [18F]PI-2620 can serve as a surrogate biomarker for neuronal injury. Dynamic imaging or a dual time-point protocol for tau-PET imaging could supersede additional [18F]FDG-PET imaging by indexing both the distribution of tau and the extent of neuronal injury.


Asunto(s)
Enfermedad de Alzheimer , Tomografía Computarizada por Rayos X , Enfermedad de Alzheimer/diagnóstico por imagen , Biomarcadores , Fluorodesoxiglucosa F18 , Humanos , Tomografía de Emisión de Positrones
20.
Mov Disord ; 35(1): 82-90, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31755599

RESUMEN

BACKGROUND: Effects of DBS on freezing of gait and other axial signs in PD patients are unclear. OBJECTIVE: Secondary analysis to assess whether DBS affects these symptoms within a large randomized controlled trial comparing DBS of the STN combined with best medical treatment and best medical treatment alone in patients with early motor complications (EARLYSTIM-trial). METHODS: One hundred twenty-four patients were randomized in the stimulation group and 127 patients in the best medical treatment group. Presence of freezing of gait was assessed in the worst condition based on item-14 of the UPDRS-II at baseline and follow-up. The posture, instability, and gait-difficulty subscore of the UPDRS-III, and a gait test including quantification of freezing of gait and number of steps, were performed in both medication-off and medication-on conditions. RESULTS: Fifty-two percent in both groups had freezing of gait at baseline based on UPDRS-II. This proportion decreased in the stimulation group to 34%, but did not change in the best medical treatment group at 24 months (P = 0.018). The steps needed to complete the gait test decreased in the stimulation group and was superior to the best medical treatment group (P = 0.016). The axial signs improved in the stimulation group compared to the best medical treatment group (P < 0.01) in both medication-off and medication-on conditions. CONCLUSIONS: Within the first 2 years of DBS, freezing of gait and other axial signs improved in the medication-off condition compared to best medical treatment in these patients. © 2019 International Parkinson and Movement Disorder Society.


Asunto(s)
Estimulación Encefálica Profunda , Trastornos Neurológicos de la Marcha/terapia , Marcha/fisiología , Enfermedad de Parkinson/terapia , Trastornos Neurológicos de la Marcha/etiología , Humanos , Enfermedad de Parkinson/complicaciones , Postura/fisiología , Núcleo Subtalámico/fisiopatología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda