Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Allergy Clin Immunol ; 152(4): 949-960, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37390900

RESUMEN

BACKGROUND: The actin cytoskeleton has a crucial role in the maintenance of the immune homeostasis by controlling various cellular processes, including cell migration. Mutations in TTC7A have been described as the cause of a primary immunodeficiency associated to different degrees of gut involvement and alterations in the actin cytoskeleton dynamics. OBJECTIVES: This study investigates the impact of TTC7A deficiency in immune homeostasis. In particular, the role of the TTC7A/phosphatidylinositol 4 kinase type III α pathway in the control of leukocyte migration and actin dynamics. METHODS: Microfabricated devices were leveraged to study cell migration and actin dynamics of murine and patient-derived leukocytes under confinement at the single-cell level. RESULTS: We show that TTC7A-deficient lymphocytes exhibit an altered cell migration and reduced capacity to deform through narrow gaps. Mechanistically, TTC7A-deficient phenotype resulted from impaired phosphoinositide signaling, leading to the downregulation of the phosphoinositide 3-kinase/AKT/RHOA regulatory axis and imbalanced actin cytoskeleton dynamics. TTC7A-associated phenotype resulted in impaired cell motility, accumulation of DNA damage, and increased cell death in dense 3-dimensional gels in the presence of chemokines. CONCLUSIONS: These results highlight a novel role of TTC7A as a critical regulator of lymphocyte migration. Impairment of this cellular function is likely to contribute to the pathophysiology underlying progressive immunodeficiency in patients.


Asunto(s)
Actinas , Fosfatidilinositol 3-Quinasas , Humanos , Animales , Ratones , Muerte Celular , Mutación , Movimiento Celular/genética , Daño del ADN , Proteínas , 1-Fosfatidilinositol 4-Quinasa
2.
J Cell Sci ; 132(4)2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30745333

RESUMEN

Single cells migrate in a myriad of physiological contexts, such as tissue patrolling by immune cells, and during neurogenesis and tissue remodeling, as well as in metastasis, the spread of cancer cells. To understand the basic principles of single-cell migration, a reductionist approach can be taken. This aims to control and deconstruct the complexity of different cellular microenvironments into simpler elementary constrains that can be recombined together. This approach is the cell microenvironment equivalent of in vitro reconstituted systems that combine elementary molecular players to understand cellular functions. In this Cell Science at a Glance article and accompanying poster, we present selected experimental setups that mimic different events that cells undergo during migration in vivo These include polydimethylsiloxane (PDMS) devices to deform whole cells or organelles, micro patterning, nano-fabricated structures like grooves, and compartmentalized collagen chambers with chemical gradients. We also outline the main contribution of each technique to the understanding of different aspects of single-cell migration.


Asunto(s)
Bioensayo , Movimiento Celular , Matriz Extracelular/metabolismo , Microfluídica/métodos , Análisis de la Célula Individual/métodos , Microambiente Celular/fisiología , Colágeno/química , Dimetilpolisiloxanos/química , Células Eucariotas/metabolismo , Células Eucariotas/ultraestructura , Matriz Extracelular/ultraestructura , Humanos , Microtecnología/métodos , Modelos Biológicos , Imitación Molecular , Análisis de la Célula Individual/instrumentación
3.
Methods Mol Biol ; 2740: 117-124, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38393472

RESUMEN

The quality of murine and human oocytes correlates to their mechanical properties, which are tightly regulated to reach the blastocyst stage after fertilization. Oocytes are nonadherent spherical cells with a diameter over 80 µm. Their mechanical properties have been studied in our lab and others using the micropipette aspiration technique, particularly to obtain the oocyte cortical tension. Micropipette aspiration is affordable but has a low throughput and induces cell-scale deformation. Here we present a step-by-step protocol to characterize the mechanical properties of oocytes using atomic force microscopy (AFM), which is minimally invasive and has a much higher throughput. We used electron microscopy grids to immobilize oocytes. This allowed us to obtain local and reproducible measurements of the cortical tension of murine oocytes during their meiotic divisions. Cortical tension values obtained by AFM are in agreement with the ones previously obtained by micropipette aspiration. Our protocol could help characterize the biophysical properties of oocytes or other types of large nonadherent samples in fundamental and medical research.


Asunto(s)
Oocitos , Humanos , Animales , Ratones , Microscopía de Fuerza Atómica
4.
Sci Adv ; 7(27)2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34215576

RESUMEN

The cell cortex is a contractile actin meshwork, which determines cell shape and is essential for cell mechanics, migration, and division. Because its thickness is below optical resolution, there is a tendency to consider the cortex as a thin uniform two-dimensional layer. Using two mutually attracted magnetic beads, one inside the cell and the other in the extracellular medium, we pinch the cortex of dendritic cells and provide an accurate and time-resolved measure of its thickness. Our observations draw a new picture of the cell cortex as a highly dynamic layer, harboring large fluctuations in its third dimension because of actomyosin contractility. We propose that the cortex dynamics might be responsible for the fast shape-changing capacity of highly contractile cells that use amoeboid-like migration.

5.
Front Immunol ; 10: 747, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31031752

RESUMEN

Upon infection, mature dendritic cells (mDCs) migrate from peripheral tissue to lymph nodes (LNs) to activate T lymphocytes and initiate the adaptive immune response. This fast and tightly regulated process is tuned by different microenvironmental factors, such as the physical properties of the tissue. Mechanistically, mDCs migration mostly relies on acto-myosin flow and contractility that depend on non-muscular Myosin IIA (MyoII) activity. However, the specific contribution of this molecular motor for mDCs navigation in complex microenvironments has yet to be fully established. Here, we identified a specific role of MyoII activity in the regulation of mDCs migration in highly confined microenvironments. Using microfluidic systems, we observed that during mDCs chemotaxis in 3D collagen gels under defined CCL21 gradients, MyoII activity was required to sustain their fast speed but not to orientate them toward the chemokine. Indeed, despite the fact that mDCs speed declined, these cells still migrated through the 3D gels, indicating that this molecular motor has a discrete function during their motility in this irregular microenvironment. Consistently, using microchannels of different sizes, we found that MyoII activity was essential to maintain fast cell speed specifically under strong confinement. Analysis of cell motility through micrometric holes further demonstrated that cell contractility facilitated mDCs passage only over very small gaps. Altogether, this work highlights that high contractility acts as an adaptation mechanism exhibited by mDCs to optimize their motility in restricted landscapes. Hence, MyoII activity ultimately facilitates their navigation in highly confined areas of structurally irregular tissues, contributing to the fine-tuning of their homing to LNs to initiate adaptive immune responses.


Asunto(s)
Movimiento Celular/inmunología , Microambiente Celular/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Miosina Tipo II/metabolismo , Animales , Movimiento Celular/genética , Microambiente Celular/genética , Colágeno/metabolismo , Ratones , Miosina Tipo II/genética
6.
Methods Mol Biol ; 1749: 361-373, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29526010

RESUMEN

In multicellular organisms, cell migration is a complex process. Examples of this are observed during cell motility in the interstitial space, full of extracellular matrix fibers, or when cells pass through endothelial layers to colonize or exit specific tissues. A common parameter for both situations is the fast adaptation of the cellular shape to their irregular landscape. In this chapter, we describe two methods to study cell migration in complex environments. The first one consists in a multichamber device for the visualization of cell haptotaxis toward the collagen-binding chemokine CCL21. This method is used to study cell migration as well as deformations during directed motility, as in the interstitial space. The second one consists in microfabricated channels connected to small constrictions. This procedure allows the study of cell deformations when single cells migrate through small holes and it is analogous to passage of cells through endothelial layers, resulting in a simplified system to study the mechanisms operating during transvasation. Both methods combined provide a powerful hub for the study of cell plasticity during migration in complex environments.


Asunto(s)
Movimiento Celular/fisiología , Colágeno/metabolismo , Leucocitos/citología , Diferenciación Celular/fisiología , Células Cultivadas , Quimiocina CCL21/metabolismo , Quimiotaxis/fisiología , Células Dendríticas/citología , Humanos , Transducción de Señal/fisiología
7.
Curr Opin Cell Biol ; 48: 72-78, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28641118

RESUMEN

Cell migration depends on a combination of the cell's intrinsic capacity to move and the proper interpretation of external cues. This multistep process enables leukocytes to travel long distances in organs in just a few hours. This fast migration is partly due to the leukocytes' high level of plasticity, which helps them to adapt to a changing environment. Here, we review recent progress in understanding the mechanisms used by leukocytes to move rapidly and efficiently in intricate anatomical landscapes. We shall focus on specific cytoskeletal rearrangements used by neutrophils and dendritic cells to migrate within confined environments. Lastly, we will describe the properties that facilitate the rapid migration of leukocyte in complex tissue geometries.


Asunto(s)
Movimiento Celular , Leucocitos/citología , Animales , Núcleo Celular , Quimiotaxis , Citoesqueleto/metabolismo , Células Dendríticas/metabolismo , Humanos , Leucocitos/metabolismo , Neutrófilos/metabolismo
8.
Mol Cancer Ther ; 16(1): 143-155, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27811011

RESUMEN

Taxane therapy remains the standard of care for triple-negative breast cancer. However, high frequencies of recurrence and progression in treated patients indicate that metastatic breast cancer cells can acquire resistance to this drug. The actin regulatory protein MENA and particularly its invasive isoform, MENAINV, are established drivers of metastasis. MENAINV expression is significantly correlated with metastasis and poor outcome in human patients with breast cancer. We investigated whether MENA isoforms might play a role in driving resistance to chemotherapeutics. We find that both MENA and MENAINV confer resistance to the taxane paclitaxel, but not to the widely used DNA-damaging agents doxorubicin or cisplatin. Furthermore, paclitaxel treatment does not attenuate growth of MENAINV-driven metastatic lesions. Mechanistically, MENA isoform expression alters the ratio of dynamic and stable microtubule populations in paclitaxel-treated cells. MENA expression also increases MAPK signaling in response to paclitaxel treatment. Decreasing ERK phosphorylation by co-treatment with MEK inhibitor restored paclitaxel sensitivity by driving microtubule stabilization in MENA isoform-expressing cells. Our results reveal a novel mechanism of taxane resistance in highly metastatic breast cancer cells and identify a combination therapy to overcome such resistance. Mol Cancer Ther; 16(1); 143-55. ©2016 AACR.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Resistencia a Antineoplásicos/genética , Expresión Génica , Proteínas de Microfilamentos/genética , Paclitaxel/farmacología , Neoplasias de la Mama Triple Negativas/genética , Animales , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Proteínas de Microfilamentos/metabolismo , Microtúbulos/metabolismo , Metástasis de la Neoplasia , Isoformas de Proteínas , Neoplasias de la Mama Triple Negativas/diagnóstico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Sci Immunol ; 2(16)2017 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-29079589

RESUMEN

Dendritic cells (DCs) patrol their environment by linking antigen acquisition by macropinocytosis to cell locomotion. DC activation upon bacterial sensing inhibits macropinocytosis and increases DC migration, thus promoting the arrival of DCs to lymph nodes for antigen presentation to T cells. The signaling events that trigger such changes are not fully understood. We show that lysosome signaling plays a critical role in this process. Upon bacterial sensing, lysosomal calcium is released by the ionic channel TRPML1 (transient receptor potential cation channel, mucolipin subfamily, member 1), which activates the actin-based motor protein myosin II at the cell rear, promoting fast and directional migration. Lysosomal calcium further induces the activation of the transcription factor EB (TFEB), which translocates to the nucleus to maintain TRPML1 expression. We found that the TRPML1-TFEB axis results from the down-regulation of macropinocytosis after bacterial sensing by DCs. Lysosomal signaling therefore emerges as a hitherto unexpected link between macropinocytosis, actomyosin cytoskeleton organization, and DC migration.


Asunto(s)
Movimiento Celular , Células Dendríticas/inmunología , Lisosomas/metabolismo , Transducción de Señal , Animales , Presentación de Antígeno , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Calcio/metabolismo , Diferenciación Celular , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Células Dendríticas/fisiología , Regulación hacia Abajo , Lisosomas/inmunología , Ratones , Miosina Tipo II/genética , Miosina Tipo II/metabolismo , Pinocitosis , Canales de Potencial de Receptor Transitorio/deficiencia , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda