Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Dairy Sci ; 102(11): 9857-9869, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31521352

RESUMEN

Rehydrated and ensiled mature ground corn has high ruminal starch digestibility, but particle size (PS) and dietary starch proportion (ST) can affect starch digestion and lactating cow performance. We evaluated the effect of rehydrated and ensiled corn (REC), PS, and ST on intake, lactation performance, nutrient digestibility, ruminal fermentation profile, and chewing behavior of dairy cows. Kernels from an 84% vitreousness hybrid were finely (FN) or coarsely (CS) ground, yielding geometric mean particle sizes of 1,591 and 2,185 µm, respectively. Ground kernels were rehydrated [60% dry matter (DM)] and ensiled in 200-L buckets for ≥205 d. The grinding rate (t/h) was 3.9 for FN and 11.7 for CS. The PS did not affect DM loss (11.3% of ensiled) or silage pH (3.8). Samples of each bucket (n = 15/PS) before and after silage fermentation were incubated in situ for 0, 3, 6, 18, and 48 h in 4 rumen-cannulated lactating cows. Ensiling increased the effective ruminal in situ DM degradation (63.7 vs. 34.1%), regardless of PS. Sixteen Holstein cows (152 ± 96 d in milk) in 4 × 4 Latin squares (21-d periods) were individually fed a 2 × 2 factorial combination of low (LO) or high (HI) starch diets with FN or CS. Cows were fed the same REC incubated in situ. Varied concentration of starch in the diet (29.2 vs. 23.5% of DM) was achieved by partial replacement of REC (22.0 vs. 14.2% of DM) with citrus pulp (0 vs. 8.2% of DM). Milk, protein, fat, and lactose yields did not differ. Milk fat percentage was reduced and protein percentage was increased by HI. Treatment FN increased feed efficiency (energy-corrected milk/digestible organic matter intake) when fed with HI. Total-tract starch digestibility tended to be reduced by CS (96.4 vs. 97.2% of starch intake). Serum ß-hydroxybutyrate was increased by LO. High-starch diet reduced the molar proportions of acetate and butyrate in ruminal fluid and increased propionate and isoacids. Particle size did not affect ruminal fermentation profile. Coarse grinding reduced plasma d-lactate concentration with HI. Diet HI reduced the proportion of daily intake from 1900 to 0700 h and induced preferential intake of feed particles <8 mm and greater refusal of particles >19 mm in the morning. Fine REC reduced rumination time per day and increased eating time per DM intake. Milk and plasma urea-N did not differ. Ensiling of mature flint corn for >200 d largely eliminated the effect of the PS of REC on the studied outcomes. The proportion of REC in the diet affected ruminal fermentation profile and milk solids concentration, but did not affect short-term performance and digestibility. Coarse grinding of REC may allow increasing the grinding rate and thus save labor and energy during ensiling.


Asunto(s)
Bovinos/fisiología , Leche/química , Tamaño de la Partícula , Ensilaje/análisis , Zea mays , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Digestión , Grano Comestible , Femenino , Fermentación , Lactancia , Lactosa/metabolismo , Leche/metabolismo , Distribución Aleatoria , Rumen/metabolismo , Almidón/análisis
2.
J Dairy Sci ; 101(7): 5924-5936, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29627253

RESUMEN

The supplementation of dairy cows with yeast culture may increase diet digestibility, plasma niacin concentration, heat dissipation, and lactation performance. Our objective was to evaluate the response of Holstein cows in late lactation (234 ± 131 d in milk) to dead yeast culture (YC, 15 g/d, Factor SC, GRASP, Saccharomyces cerevisiae) during Brazilian summer (temperature-humidity index >68 for 92.2% of the time). Thirty-two cows were individually fed a standard total mixed ration for 14 d and control (CTL) or YC treatments for 35 d, in a covariate adjusted complete randomized block design. Response was evaluated in wk 5 or as repeated measures over time. Cows were milked 3 times per day and treatments (YC or placebo) were orally dosed to each cow before each milking. Plasma niacin was 1.50 for CTL and 1.66 µg/mL for YC. The YC reduced rectal temperature, respiration rate, and skin temperature, whereas it tended to increase sweating rate. The proportion of cows with rectal temperature ≥39.2°C on CTL and YC was, respectively, 8 and 0% at 0730 h, 52 and 25% at 1500 h, and 35 and 26% at 2200 h. Plasma glucose was increased by YC. The total-tract apparent digestibility of nutrients, plasma urea N concentration, molar proportion of ruminal VFA, and urinary allantoin excretion were not affected by YC. Cows fed YC were less selective against feed particles >19 mm in the morning, in the afternoon were more selective against long feed particles and in favor of particles <8 mm, and refused short particles at night. Milk yield was not different (30.5 kg/d for CTL and 30.2 kg/d for YC). Feeding YC reduced dry matter intake (20.3 vs. 19.4 kg/d) and the digestible organic matter intake (15.6 vs. 13.9 kg/d). The inclusion of YC increased the ratios of milk to dry matter intake (1.50 vs. 1.64) and energy-corrected milk to dry matter intake (1.81 vs. 1.98). The covariate adjusted body weight (648 kg) and body condition score (3.0) did not differ. Milk solids yields and concentrations, linear somatic cell count, and milk urea N were also similar. The supplementation of YC increased plasma niacin concentration, body heat loss, and feed efficiency of late lactation dairy cows by reducing intake at similar milk yield.


Asunto(s)
Bovinos/fisiología , Ingestión de Energía/fisiología , Lactancia/fisiología , Niacina/sangre , Levaduras/metabolismo , Alimentación Animal , Animales , Regulación de la Temperatura Corporal , Brasil , Dieta , Femenino , Leche , Rumen/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda