Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Vis ; 24(1): 6, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38197739

RESUMEN

Multidimensional psychometric functions can typically be estimated nonparametrically for greater accuracy or parametrically for greater efficiency. By recasting the estimation problem from regression to classification, however, powerful machine learning tools can be leveraged to provide an adjustable balance between accuracy and efficiency. Contrast sensitivity functions (CSFs) are behaviorally estimated curves that provide insight into both peripheral and central visual function. Because estimation can be impractically long, current clinical workflows must make compromises such as limited sampling across spatial frequency or strong assumptions on CSF shape. This article describes the development of the machine learning contrast response function (MLCRF) estimator, which quantifies the expected probability of success in performing a contrast detection or discrimination task. A machine learning CSF can then be derived from the MLCRF. Using simulated eyes created from canonical CSF curves and actual human contrast response data, the accuracy and efficiency of the machine learning contrast sensitivity function (MLCSF) was evaluated to determine its potential utility for research and clinical applications. With stimuli selected randomly, the MLCSF estimator converged slowly toward ground truth. With optimal stimulus selection via Bayesian active learning, convergence was nearly an order of magnitude faster, requiring only tens of stimuli to achieve reasonable estimates. Inclusion of an informative prior provided no consistent advantage to the estimator as configured. MLCSF achieved efficiencies on par with quickCSF, a conventional parametric estimator, but with systematically higher accuracy. Because MLCSF design allows accuracy to be traded off against efficiency, it should be explored further to uncover its full potential.


Asunto(s)
Sensibilidad de Contraste , Tetranitrato de Pentaeritritol , Humanos , Teorema de Bayes , Ojo , Aprendizaje Automático
2.
J Vis ; 24(8): 6, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39115833

RESUMEN

Recent advances in nonparametric contrast sensitivity function (CSF) estimation have yielded a new tradeoff between accuracy and efficiency not available to classical parametric estimators. An additional advantage of this new framework is the ability to independently tune multiple aspects of the estimator to seek further improvements. Machine learning CSF estimation with Gaussian processes allows for design optimization in the kernel, acquisition function, and underlying task representation, to name a few. This article describes a novel kernel for CSF estimation that is more flexible than a kernel based on strictly functional forms. Despite being more flexible, it can result in a more efficient estimator. Further, trial selection for data acquisition that is generalized beyond pure information gain can also improve estimator quality. Finally, introducing latent variable representations underlying general CSF shapes can enable simultaneous estimation of multiple CSFs, such as from different eyes, eccentricities, or luminances. The conditions under which the new procedures perform better than previous nonparametric estimation procedures are presented and quantified.


Asunto(s)
Sensibilidad de Contraste , Sensibilidad de Contraste/fisiología , Humanos , Aprendizaje Automático
3.
J Psychiatry Neurosci ; 46(1): E97-E110, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33206039

RESUMEN

The goal of precision medicine (individually tailored treatments) is not being achieved for neurobehavioural conditions such as psychiatric disorders. Traditional randomized clinical trial methods are insufficient for advancing precision medicine because of the dynamic complexity of these conditions. We present a pragmatic solution: the precision clinical trial framework, encompassing methods for individually tailored treatments. This framework includes the following: (1) treatment-targeted enrichment, which involves measuring patients' response after a brief bout of an intervention, and then randomizing patients to a full course of treatment, using the acute response to predict long-term outcomes; (2) adaptive treatments, which involve adjusting treatment parameters during the trial to individually optimize the treatment; and (3) precise measurement, which involves measuring predictor and outcome variables with high accuracy and reliability using techniques such as ecological momentary assessment. This review summarizes precision clinical trials and provides a research agenda, including new biomarkers such as precision neuroimaging, transcranial magnetic stimulation-electroencephalogram digital phenotyping and advances in statistical and machine-learning models. Validation of these approaches - and then widespread incorporation of the precision clinical trial framework - could help achieve the vision of precision medicine for neurobehavioural conditions.


Asunto(s)
Ensayos Clínicos como Asunto , Trastornos Mentales/diagnóstico , Trastornos Mentales/terapia , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/terapia , Evaluación de Resultado en la Atención de Salud , Medicina de Precisión , Proyectos de Investigación , Ensayos Clínicos como Asunto/métodos , Ensayos Clínicos como Asunto/normas , Humanos , Evaluación de Resultado en la Atención de Salud/métodos , Evaluación de Resultado en la Atención de Salud/normas , Medicina de Precisión/métodos , Medicina de Precisión/normas , Proyectos de Investigación/normas
4.
Ear Hear ; 42(6): 1499-1507, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33675587

RESUMEN

The global digital transformation enables computational audiology for advanced clinical applications that can reduce the global burden of hearing loss. In this article, we describe emerging hearing-related artificial intelligence applications and argue for their potential to improve access, precision, and efficiency of hearing health care services. Also, we raise awareness of risks that must be addressed to enable a safe digital transformation in audiology. We envision a future where computational audiology is implemented via interoperable systems using shared data and where health care providers adopt expanded roles within a network of distributed expertise. This effort should take place in a health care system where privacy, responsibility of each stakeholder, and patients' safety and autonomy are all guarded by design.


Asunto(s)
Audiología , Pérdida Auditiva , Inteligencia Artificial , Atención a la Salud , Audición , Humanos
5.
PLoS Biol ; 15(11): e2002459, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29091725

RESUMEN

The notion that neurons with higher selectivity carry more information about external sensory inputs is widely accepted in neuroscience. High-selectivity neurons respond to a narrow range of sensory inputs, and thus would be considered highly informative by rejecting a large proportion of possible inputs. In auditory cortex, neuronal responses are less selective immediately after the onset of a sound and then become highly selective in the following sustained response epoch. These 2 temporal response epochs have thus been interpreted to encode first the presence and then the content of a sound input. Contrary to predictions from that prevailing theory, however, we found that the neural population conveys similar information about sound input across the 2 epochs in spite of the neuronal selectivity differences. The amount of information encoded turns out to be almost completely dependent upon the total number of population spikes in the read-out window for this system. Moreover, inhomogeneous Poisson spiking behavior is sufficient to account for this property. These results imply a novel principle of sensory encoding that is potentially shared widely among multiple sensory systems.


Asunto(s)
Potenciales de Acción , Corteza Auditiva/fisiología , Callithrix/fisiología , Neuronas/fisiología , Localización de Sonidos , Estimulación Acústica , Animales , Corteza Auditiva/citología , Vías Auditivas , Percepción Auditiva , Neuronas/citología
6.
Ear Hear ; 41(6): 1692-1702, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33136643

RESUMEN

OBJECTIVES: When one ear of an individual can hear significantly better than the other ear, evaluating the worse ear with loud probe tones may require delivering masking noise to the better ear to prevent the probe tones from inadvertently being heard by the better ear. Current masking protocols are confusing, laborious, and time consuming. Adding a standardized masking protocol to an active machine learning audiogram procedure could potentially alleviate all of these drawbacks by dynamically adapting the masking as needed for each individual. The goal of this study is to determine the accuracy and efficiency of automated machine learning masking for obtaining true hearing thresholds. DESIGN: Dynamically masked automated audiograms were collected for 29 participants between the ages of 21 and 83 (mean 43, SD 20) with a wide range of hearing abilities. Normal-hearing listeners were given unmasked and masked machine learning audiogram tests. Listeners with hearing loss were given a standard audiogram test by an audiologist, with masking stimuli added as clinically determined, followed by a masked machine learning audiogram test. The hearing thresholds estimated for each pair of techniques were compared at standard audiogram frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz). RESULTS: Masked and unmasked machine learning audiogram threshold estimates matched each other well in normal-hearing listeners, with a mean absolute difference between threshold estimates of 3.4 dB. Masked machine learning audiogram thresholds also matched well the thresholds determined by a conventional masking procedure, with a mean absolute difference between threshold estimates for listeners with low asymmetry and high asymmetry between the ears, respectively, of 4.9 and 2.6 dB. Notably, out of 6200 masked machine learning audiogram tone deliveries for this study, no instances of tones detected by the nontest ear were documented. The machine learning methods were also generally faster than the manual methods, and for some listeners, substantially so. CONCLUSIONS: Dynamically masked audiograms achieve accurate true threshold estimates and reduce test time compared with current clinical masking procedures. Dynamic masking is a compelling alternative to the methods currently used to evaluate individuals with highly asymmetric hearing, yet can also be used effectively and efficiently for anyone.


Asunto(s)
Audiometría , Pérdida Auditiva , Adulto , Anciano , Anciano de 80 o más Años , Audiometría de Tonos Puros , Umbral Auditivo , Audición , Pérdida Auditiva/diagnóstico , Humanos , Aprendizaje Automático , Persona de Mediana Edad , Enmascaramiento Perceptual , Adulto Joven
7.
Ear Hear ; 40(4): 918-926, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30358656

RESUMEN

OBJECTIVES: A confluence of recent developments in cloud computing, real-time web audio and machine learning psychometric function estimation has made wide dissemination of sophisticated turn-key audiometric assessments possible. The authors have combined these capabilities into an online (i.e., web-based) pure-tone audiogram estimator intended to empower researchers and clinicians with advanced hearing tests without the need for custom programming or special hardware. The objective of this study was to assess the accuracy and reliability of this new online machine learning audiogram method relative to a commonly used hearing threshold estimation technique also implemented online for the first time in the same platform. DESIGN: The authors performed air conduction pure-tone audiometry on 21 participants between the ages of 19 and 79 years (mean 41, SD 21) exhibiting a wide range of hearing abilities. For each ear, two repetitions of online machine learning audiogram estimation and two repetitions of online modified Hughson-Westlake ascending-descending audiogram estimation were acquired by an audiologist using the online software tools. The estimated hearing thresholds of these two techniques were compared at standard audiogram frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz). RESULTS: The two threshold estimation methods delivered very similar threshold estimates at standard audiogram frequencies. Specifically, the mean absolute difference between threshold estimates was 3.24 ± 5.15 dB. The mean absolute differences between repeated measurements of the online machine learning procedure and between repeated measurements of the Hughson-Westlake procedure were 2.85 ± 6.57 dB and 1.88 ± 3.56 dB, respectively. The machine learning method generated estimates of both threshold and spread (i.e., the inverse of psychometric slope) continuously across the entire frequency range tested from fewer samples on average than the modified Hughson-Westlake procedure required to estimate six discrete thresholds. CONCLUSIONS: Online machine learning audiogram estimation in its current form provides all the information of conventional threshold audiometry with similar accuracy and reliability in less time. More importantly, however, this method provides additional audiogram details not provided by other methods. This standardized platform can be readily extended to bone conduction, masking, spectrotemporal modulation, speech perception, etc., unifying audiometric testing into a single comprehensive procedure efficient enough to become part of the standard audiologic workup.


Asunto(s)
Audiometría de Tonos Puros/métodos , Pérdida Auditiva/diagnóstico , Internet , Aprendizaje Automático , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Índice de Severidad de la Enfermedad , Adulto Joven
8.
Behav Res Methods ; 51(3): 1271-1285, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-29949072

RESUMEN

Behavioral testing in perceptual or cognitive domains requires querying a subject multiple times in order to quantify his or her ability in the corresponding domain. These queries must be conducted sequentially, and any additional testing domains are also typically tested sequentially, such as with distinct tests comprising a test battery. As a result, existing behavioral tests are often lengthy and do not offer comprehensive evaluation. The use of active machine-learning kernel methods for behavioral assessment provides extremely flexible yet efficient estimation tools to more thoroughly investigate perceptual or cognitive processes without incurring the penalty of excessive testing time. Audiometry represents perhaps the simplest test case to demonstrate the utility of these techniques. In pure-tone audiometry, hearing is assessed in the two-dimensional input space of frequency and intensity, and the test is repeated for both ears. Although an individual's ears are not linked physiologically, they share many features in common that lead to correlations suitable for exploitation in testing. The bilateral audiogram estimates hearing thresholds in both ears simultaneously by conjoining their separate input domains into a single search space, which can be evaluated efficiently with modern machine-learning methods. The result is the introduction of the first conjoint psychometric function estimation procedure, which consistently delivers accurate results in significantly less time than sequential disjoint estimators.


Asunto(s)
Psicometría , Audiometría de Tonos Puros , Umbral Auditivo , Humanos , Aprendizaje Automático
9.
J Neurophysiol ; 118(4): 2024-2033, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28701545

RESUMEN

Neurons that respond favorably to a particular sound level have been observed throughout the central auditory system, becoming steadily more common at higher processing areas. One theory about the role of these level-tuned or nonmonotonic neurons is the level-invariant encoding of sounds. To investigate this theory, we simulated various subpopulations of neurons by drawing from real primary auditory cortex (A1) neuron responses and surveyed their performance in forming different sound level representations. Pure nonmonotonic subpopulations did not provide the best level-invariant decoding; instead, mixtures of monotonic and nonmonotonic neurons provided the most accurate decoding. For level-fidelity decoding, the inclusion of nonmonotonic neurons slightly improved or did not change decoding accuracy until they constituted a high proportion. These results indicate that nonmonotonic neurons fill an encoding role complementary to, rather than alternate to, monotonic neurons.NEW & NOTEWORTHY Neurons with nonmonotonic rate-level functions are unique to the central auditory system. These level-tuned neurons have been proposed to account for invariant sound perception across sound levels. Through systematic simulations based on real neuron responses, this study shows that neuron populations perform sound encoding optimally when containing both monotonic and nonmonotonic neurons. The results indicate that instead of working independently, nonmonotonic neurons complement the function of monotonic neurons in different sound-encoding contexts.


Asunto(s)
Corteza Auditiva/fisiología , Neuronas/fisiología , Animales , Corteza Auditiva/citología , Percepción Auditiva , Callithrix
10.
J Neurophysiol ; 117(2): 713-727, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881720

RESUMEN

Robust auditory perception plays a pivotal function for processing behaviorally relevant sounds, particularly with distractions from the environment. The neuronal coding enabling this ability, however, is still not well understood. In this study, we recorded single-unit activity from the primary auditory cortex (A1) of awake marmoset monkeys (Callithrix jacchus) while delivering conspecific vocalizations degraded by two different background noises: broadband white noise and vocalization babble. Noise effects on neural representation of target vocalizations were quantified by measuring the responses' similarity to those elicited by natural vocalizations as a function of signal-to-noise ratio. A clustering approach was used to describe the range of response profiles by reducing the population responses to a summary of four response classes (robust, balanced, insensitive, and brittle) under both noise conditions. This clustering approach revealed that, on average, approximately two-thirds of the neurons change their response class when encountering different noises. Therefore, the distortion induced by one particular masking background in single-unit responses is not necessarily predictable from that induced by another, suggesting the low likelihood of a unique group of noise-invariant neurons across different background conditions in A1. Regarding noise influence on neural activities, the brittle response group showed addition of spiking activity both within and between phrases of vocalizations relative to clean vocalizations, whereas the other groups generally showed spiking activity suppression within phrases, and the alteration between phrases was noise dependent. Overall, the variable single-unit responses, yet consistent response types, imply that primate A1 performs scene analysis through the collective activity of multiple neurons. NEW & NOTEWORTHY: The understanding of where and how auditory scene analysis is accomplished is of broad interest to neuroscientists. In this paper, we systematically investigated neuronal coding of multiple vocalizations degraded by two distinct noises at various signal-to-noise ratios in nonhuman primates. In the process, we uncovered heterogeneity of single-unit representations for different auditory scenes yet homogeneity of responses across the population.


Asunto(s)
Corteza Auditiva/citología , Corteza Auditiva/fisiología , Percepción Auditiva/fisiología , Neuronas/fisiología , Ruido , Vocalización Animal/fisiología , Estimulación Acústica , Acústica , Potenciales de Acción/fisiología , Animales , Callithrix , Femenino
11.
J Acoust Soc Am ; 141(4): 2513, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28464646

RESUMEN

Conventional psychometric function (PF) estimation involves fitting a parametric, unidimensional sigmoid to binary subject responses, which is not readily extendible to higher order PFs. This study presents a nonparametric, Bayesian, multidimensional PF estimator that also relies upon traditional binary subject responses. This technique is built upon probabilistic classification (PC), which attempts to ascertain the subdomains corresponding to each subject response as a function of multiple independent variables. Increased uncertainty in the location of class boundaries results in a greater spread in the PF estimate, which is similar to a parametric PF estimate with a lower slope. PC was evaluated on both one-dimensional (1D) and two-dimensional (2D) simulated auditory PFs across a variety of function shapes and sample numbers. In the 1D case, PC demonstrated equivalent performance to conventional maximum likelihood regression for the same number of simulated responses. In the 2D case, where the responses were distributed across two independent variables, PC accuracy closely matched the accuracy of 1D maximum likelihood estimation at discrete values of the second variable. The flexibility and scalability of the PC formulation make this an excellent option for estimating traditional PFs as well as more complex PFs, which have traditionally lacked rigorous estimation procedures.


Asunto(s)
Percepción Auditiva , Probabilidad , Psicometría , Estimulación Acústica , Teorema de Bayes , Simulación por Computador , Humanos , Tiempo de Reacción , Procesos Estocásticos , Factores de Tiempo
12.
J Neurophysiol ; 116(6): 2789-2798, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27707812

RESUMEN

Sensory neurons across sensory modalities and specific processing areas have diverse levels of spontaneous firing rates (SFRs) in the absence of sensory stimuli. However, the functional significance of this spontaneous activity is not well-understood. Previous studies in the auditory system have demonstrated that different levels of spontaneous activity are correlated with a variety of physiological and anatomic properties, suggesting that neurons with differing SFRs make unique contributions to the encoding of auditory stimuli. Additionally, altered SFRs are a correlate of tinnitus, arising in several auditory areas after exposure to ototoxic substances and noise trauma. In this study, we recorded single-unit activity from primary auditory cortex of awake marmoset monkeys while delivering wide-band random-spectrum stimuli and white Gaussian noise (WGN) to examine any divergences in stimulus encoding properties across SFR classes. We found that higher levels of spontaneous activity were associated with both higher levels of activation relative to suppression across a variety of wide-band stimuli and higher driven rates in response to WGN. Moreover, response latencies to WGN were negatively correlated with the level of activation in response to both stimulus types. These findings are consistent with a novel view of the role spontaneous spiking may play during normal stimulus processing in primary auditory cortex and how it may malfunction in cases of tinnitus.


Asunto(s)
Potenciales de Acción/fisiología , Corteza Auditiva/citología , Células Receptoras Sensoriales/fisiología , Estimulación Acústica , Animales , Callithrix , Ruido , Distribución Normal , Tiempo de Reacción , Estadísticas no Paramétricas , Vigilia
13.
Ear Hear ; 36(6): e326-35, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26258575

RESUMEN

OBJECTIVES: Pure-tone audiometry has been a staple of hearing assessments for decades. Many different procedures have been proposed for measuring thresholds with pure tones by systematically manipulating intensity one frequency at a time until a discrete threshold function is determined. The authors have developed a novel nonparametric approach for estimating a continuous threshold audiogram using Bayesian estimation and machine learning classification. The objective of this study was to assess the accuracy and reliability of this new method relative to a commonly used threshold measurement technique. DESIGN: The authors performed air conduction pure-tone audiometry on 21 participants between the ages of 18 and 90 years with varying degrees of hearing ability. Two repetitions of automated machine learning audiogram estimation and one repetition of conventional modified Hughson-Westlake ascending-descending audiogram estimation were acquired by an audiologist. The estimated hearing thresholds of these two techniques were compared at standard audiogram frequencies (i.e., 0.25, 0.5, 1, 2, 4, 8 kHz). RESULTS: The two threshold estimate methods delivered very similar estimates at standard audiogram frequencies. Specifically, the mean absolute difference between estimates was 4.16 ± 3.76 dB HL. The mean absolute difference between repeated measurements of the new machine learning procedure was 4.51 ± 4.45 dB HL. These values compare favorably with those of other threshold audiogram estimation procedures. Furthermore, the machine learning method generated threshold estimates from significantly fewer samples than the modified Hughson-Westlake procedure while returning a continuous threshold estimate as a function of frequency. CONCLUSIONS: The new machine learning audiogram estimation technique produces continuous threshold audiogram estimates accurately, reliably, and efficiently, making it a strong candidate for widespread application in clinical and research audiometry.


Asunto(s)
Audiometría de Tonos Puros/métodos , Pérdida Auditiva/diagnóstico , Aprendizaje Automático , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Teorema de Bayes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Adulto Joven
14.
Front Digit Health ; 6: 1267799, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532831

RESUMEN

Computational audiology (CA) has grown over the last few years with the improvement of computing power and the growth of machine learning (ML) models. There are today several audiogram databases which have been used to improve the accuracy of CA models as well as reduce testing time and diagnostic complexity. However, these CA models have mainly been trained on single populations. This study integrated contextual and prior knowledge from audiogram databases of multiple populations as informative priors to estimate audiograms more precisely using two mechanisms: (1) a mapping function drawn from feature-based homogeneous Transfer Learning (TL) also known as Domain Adaptation (DA) and (2) Active Learning (Uncertainty Sampling) using a stream-based query mechanism. Simulations of the Active Transfer Learning (ATL) model were tested against a traditional adaptive staircase method akin to the Hughson-Westlake (HW) method for the left ear at frequencies ω=0.25,0.5,1,2,4,8 kHz, resulting in accuracy and reliability improvements. ATL improved HW tests from a mean of 41.3 sound stimuli presentations and reliability of ±9.02 dB down to 25.3±1.04 dB. Integrating multiple databases also resulted in classifying the audiograms into 18 phenotypes, which means that with increasing data-driven CA, higher precision is achievable, and a possible re-conceptualisation of the notion of phenotype classifications might be required. The study contributes to CA in identifying an ATL mechanism to leverage existing audiogram databases and CA models across different population groups. Further studies can be done for other psychophysical phenomena using ATL.

16.
J Cogn ; 6(1): 53, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692193

RESUMEN

People differ considerably in the extent to which they benefit from working memory (WM) training. Although there is increasing research focusing on individual differences associated with WM training outcomes, we still lack an understanding of which specific individual differences, and in what combination, contribute to inter-individual variations in training trajectories. In the current study, 568 undergraduates completed one of several N-back intervention variants over the course of two weeks. Participants' training trajectories were clustered into three distinct training patterns (high performers, intermediate performers, and low performers). We applied machine-learning algorithms to train a binary tree model to predict individuals' training patterns relying on several individual difference variables that have been identified as relevant in previous literature. These individual difference variables included pre-existing cognitive abilities, personality characteristics, motivational factors, video game experience, health status, bilingualism, and socioeconomic status. We found that our classification model showed good predictive power in distinguishing between high performers and relatively lower performers. Furthermore, we found that openness and pre-existing WM capacity to be the two most important factors in distinguishing between high and low performers. However, among low performers, openness and video game background were the most significant predictors of their learning persistence. In conclusion, it is possible to predict individual training performance using participant characteristics before training, which could inform the development of personalized interventions.

17.
medRxiv ; 2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37292738

RESUMEN

Multidimensional psychometric functions can typically be estimated nonparametrically for greater accuracy or parametrically for greater efficiency. By recasting the estimation problem from regression to classification, however, powerful machine learning tools can be leveraged to provide an adjustable balance between accuracy and efficiency. Contrast Sensitivity Functions (CSFs) are behaviorally estimated curves that provide insight into both peripheral and central visual function. Because estimation can be impractically long, current clinical workflows must make compromises such as limited sampling across spatial frequency or strong assumptions on CSF shape. This paper describes the development of the Machine Learning Contrast Response Function (MLCRF) estimator, which quantifies the expected probability of success in performing a contrast detection or discrimination task. A machine learning CSF can then be derived from the MLCRF. Using simulated eyes created from canonical CSF curves and actual human contrast response data, the accuracy and efficiency of the MLCSF was evaluated in order to determine its potential utility for research and clinical applications. With stimuli selected randomly, the MLCSF estimator converged slowly toward ground truth. With optimal stimulus selection via Bayesian active learning, convergence was nearly an order of magnitude faster, requiring only tens of stimuli to achieve reasonable estimates. Inclusion of an informative prior provided no consistent advantage to the estimator as configured. MLCSF achieved efficiencies on par with quickCSF, a conventional parametric estimator, but with systematically higher accuracy. Because MLCSF design allows accuracy to be traded off against efficiency, it should be explored further to uncover its full potential. Precis: Machine learning classifiers enable accurate and efficient contrast sensitivity function estimation with item-level prediction for individual eyes.

18.
Brain Imaging Behav ; 17(6): 689-701, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37695507

RESUMEN

Survivors of pediatric brain tumors experience significant cognitive deficits from their diagnosis and treatment. The exact mechanisms of cognitive injury are poorly understood, and validated predictors of long-term cognitive outcome are lacking. Resting state functional magnetic resonance imaging allows for the study of the spontaneous fluctuations in bulk neural activity, providing insight into brain organization and function. Here, we evaluated cognitive performance and functional network architecture in pediatric brain tumor patients. Forty-nine patients (7-18 years old) with a primary brain tumor diagnosis underwent resting state imaging during regularly scheduled clinical visits. All patients were tested with a battery of cognitive assessments. Extant data from 139 typically developing children were used as controls. We found that obtaining high-quality imaging data during routine clinical scanning was feasible. Functional network organization was significantly altered in patients, with the largest disruptions observed in patients who received propofol sedation. Awake patients demonstrated significant decreases in association network segregation compared to controls. Interestingly, there was no difference in the segregation of sensorimotor networks. With a median follow-up of 3.1 years, patients demonstrated cognitive deficits in multiple domains of executive function. Finally, there was a weak correlation between decreased default mode network segregation and poor picture vocabulary score. Future work with longer follow-up, longitudinal analyses, and a larger cohort will provide further insight into this potential predictor.


Asunto(s)
Neoplasias Encefálicas , Trastornos del Conocimiento , Niño , Humanos , Adolescente , Imagen por Resonancia Magnética/métodos , Encéfalo , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/patología , Mapeo Encefálico/métodos , Cognición , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/patología , Red Nerviosa/diagnóstico por imagen
19.
Int J Part Ther ; 10(1): 32-42, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37823016

RESUMEN

Purpose: Pediatric brain tumor patients often experience significant cognitive sequelae. Resting-state functional MRI (rsfMRI) provides a measure of brain network organization, and we hypothesize that pediatric brain tumor patients treated with proton therapy will demonstrate abnormal brain network architecture related to cognitive outcome and radiation dosimetry. Participants and Methods: Pediatric brain tumor patients treated with proton therapy were enrolled on a prospective study of cognitive assessment using the NIH Toolbox Cognitive Domain. rsfMRI was obtained in participants able to complete unsedated MRI. Brain system segregation (BSS), a measure of brain network architecture, was calculated for the whole brain, the high-level cognition association systems, and the sensory-motor systems. Results: Twenty-six participants were enrolled in the study for cognitive assessment, and 18 completed rsfMRI. There were baseline cognitive deficits in attention and inhibition and processing speed prior to radiation with worsening performance over time in multiple domains. Average BSS across the whole brain was significantly decreased in participants compared with healthy controls (1.089 and 1.101, respectively; P = 0.001). Average segregation of association systems was significantly lower in participants than in controls (P < 0.001) while there was no difference in the sensory motor networks (P = 0.70). Right hippocampus dose was associated with worse attention and inhibition (P < 0.05) and decreased segregation in the dorsal attention network (P < 0.05). Conclusion: Higher mean dose to the right hippocampus correlated with worse dorsal attention network segregation and worse attention and inhibition cognitive performance. Patients demonstrated alterations in brain network organization of association systems measured with rsfMRI; however, somatosensory system segregation was no different from healthy children. Further work with preradiation rsfMRI is needed to assess the effects of surgery and presence of a tumor on brain network architecture.

20.
J Neurosci ; 31(6): 2091-100, 2011 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-21307246

RESUMEN

High-gamma-band (>60 Hz) power changes in cortical electrophysiology are a reliable indicator of focal, event-related cortical activity. Despite discoveries of oscillatory subthreshold and synchronous suprathreshold activity at the cellular level, there is an increasingly popular view that high-gamma-band amplitude changes recorded from cellular ensembles are the result of asynchronous firing activity that yields wideband and uniform power increases. Others have demonstrated independence of power changes in the low- and high-gamma bands, but to date, no studies have shown evidence of any such independence above 60 Hz. Based on nonuniformities in time-frequency analyses of electrocorticographic (ECoG) signals, we hypothesized that induced high-gamma-band (60-500 Hz) power changes are more heterogeneous than currently understood. Using single-word repetition tasks in six human subjects, we showed that functional responsiveness of different ECoG high-gamma sub-bands can discriminate cognitive task (e.g., hearing, reading, speaking) and cortical locations. Power changes in these sub-bands of the high-gamma range are consistently present within single trials and have statistically different time courses within the trial structure. Moreover, when consolidated across all subjects within three task-relevant anatomic regions (sensorimotor, Broca's area, and superior temporal gyrus), these behavior- and location-dependent power changes evidenced nonuniform trends across the population. Together, the independence and nonuniformity of power changes across a broad range of frequencies suggest that a new approach to evaluating high-gamma-band cortical activity is necessary. These findings show that in addition to time and location, frequency is another fundamental dimension of high-gamma dynamics.


Asunto(s)
Mapeo Encefálico , Ondas Encefálicas/fisiología , Corteza Cerebral/fisiopatología , Trastornos del Conocimiento/diagnóstico , Potenciales Evocados/fisiología , Estimulación Acústica/métodos , Adolescente , Adulto , Análisis de Varianza , Corteza Cerebral/irrigación sanguínea , Trastornos del Conocimiento/etiología , Electroencefalografía/métodos , Epilepsia/complicaciones , Epilepsia/patología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Dinámicas no Lineales , Estimulación Luminosa/métodos , Tiempo de Reacción/fisiología , Análisis Espectral , Factores de Tiempo , Vocabulario
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda