Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell Mol Life Sci ; 80(6): 164, 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231269

RESUMEN

The α7 nicotinic acetylcholine receptor (nAChR), a potential drug target for treating cognitive disorders, mediates communication between neuronal and non-neuronal cells. Although many competitive antagonists, agonists, and partial-agonists have been found and synthesized, they have not led to effective therapeutic treatments. In this context, small molecules acting as positive allosteric modulators binding outside the orthosteric, acetylcholine, site have attracted considerable interest. Two single-domain antibody fragments, C4 and E3, against the extracellular domain of the human α7-nAChR were generated through alpaca immunization with cells expressing a human α7-nAChR/mouse 5-HT3A chimera, and are herein described. They bind to the α7-nAChR but not to the other major nAChR subtypes, α4ß2 and α3ß4. E3 acts as a slowly associating positive allosteric modulator, strongly potentiating the acetylcholine-elicited currents, while not precluding the desensitization of the receptor. An E3-E3 bivalent construct shows similar potentiating properties but displays very slow dissociation kinetics conferring quasi-irreversible properties. Whereas, C4 does not alter the receptor function, but fully inhibits the E3-evoked potentiation, showing it is a silent allosteric modulator competing with E3 binding. Both nanobodies do not compete with α-bungarotoxin, localizing at an allosteric extracellular binding site away from the orthosteric site. The functional differences of each nanobody, as well as the alteration of functional properties through nanobody modifications indicate the importance of this extracellular site. The nanobodies will be useful for pharmacological and structural investigations; moreover, they, along with the extracellular site, have a direct potential for clinical applications.


Asunto(s)
Receptores Nicotínicos , Anticuerpos de Dominio Único , Humanos , Ratones , Animales , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Anticuerpos de Dominio Único/farmacología , Regulación Alostérica , Acetilcolina/farmacología , Receptores Nicotínicos/metabolismo
2.
Cell Mol Life Sci ; 78(3): 1051-1064, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32472188

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) are pentameric ion channels expressed in the central nervous systems. nAChRs containing the α4, ß2 and α5 subunits are specifically involved in addictive processes, but their functional architecture is poorly understood due to the intricacy of assembly of these subunits. Here we constrained the subunit assembly by designing fully concatenated human α4ß2 and α4ß2α5 receptors and characterized their properties by two-electrodes voltage-clamp electrophysiology in Xenopus oocytes. We found that α5-containing nAChRs are irreversibly blocked by methanethiosulfonate (MTS) reagents through a covalent reaction with a cysteine present only in α5. MTS-block experiments establish that the concatemers are expressed in intact form at the oocyte surface, but that reconstitution of nAChRs from loose subunits show inefficient and highly variable assembly of α5 with α4 and ß2. Mutational analysis shows that the concatemers assemble both in clockwise and anticlockwise orientations, and that α5 does not contribute to ACh binding from its principal (+) site. Reinvestigation of suspected α5-ligands such as galantamine show no specific effect on α5-containing concatemers. Analysis of the α5-D398N mutation that is linked to smoking and lung cancer shows no significant effect on the electrophysiological function, suggesting that its effect might arise from alteration of other cellular processes. The concatemeric strategy provides a well-characterized platform for mechanistic analysis and screening of human α5-specific ligands.


Asunto(s)
Receptores Nicotínicos/metabolismo , Regiones no Traducidas 5' , Acetilcolina/química , Acetilcolina/metabolismo , Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Sitios de Unión , Humanos , Mesilatos/farmacología , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Oocitos/fisiología , Oxadiazoles/farmacología , Técnicas de Placa-Clamp , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Piridinas/farmacología , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Xenopus/crecimiento & desarrollo , Xenopus/metabolismo , Proteínas de Xenopus/genética , Globinas beta/genética
3.
Nat Chem Biol ; 11(1): 16-8, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25402770

RESUMEN

Secondary structure refolding is a key event in biology as it modulates the conformation of many proteins in the cell, generating functional or aberrant states. The crystal structures of mannosyltransferase PimA reveal an exceptional flexibility of the protein along the catalytic cycle, including ß-strand-to-α-helix and α-helix-to-ß-strand transitions. These structural changes modulate catalysis and are promoted by interactions of the protein with anionic phospholipids in the membrane.


Asunto(s)
Proteínas Bacterianas/química , Membrana Celular/metabolismo , Glicosiltransferasas/metabolismo , Manosiltransferasas/química , Estructura Secundaria de Proteína , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Membrana Celular/enzimología , Cristalografía por Rayos X , Humanos , Manosiltransferasas/genética , Manosiltransferasas/aislamiento & purificación , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Fosfolípidos/metabolismo , Estructura Secundaria de Proteína/genética
4.
Proteins ; 83(5): 982-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25586004

RESUMEN

Signal transduction mediated by Ser/Thr phosphorylation in Mycobacterium tuberculosis has been intensively studied in the last years, as its genome harbors eleven genes coding for eukaryotic-like Ser/Thr kinases. Here we describe the crystal structure and the autophosphorylation sites of the catalytic domain of PknA, one of two protein kinases essential for pathogen's survival. The structure of the ligand-free kinase domain shows an auto-inhibited conformation similar to that observed in human Tyr kinases of the Src-family. These results reinforce the high conservation of structural hallmarks and regulation mechanisms between prokaryotic and eukaryotic protein kinases.


Asunto(s)
Proteínas Bacterianas/química , Mycobacterium tuberculosis/enzimología , Proteínas Serina-Treonina Quinasas/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Activación Enzimática , Modelos Moleculares , Datos de Secuencia Molecular , Fosforilación , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína
5.
Biochem J ; 457(3): 425-34, 2014 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-24171907

RESUMEN

α-Ketoacid dehydrogenases are large multi-enzyme machineries that orchestrate the oxidative decarboxylation of α-ketoacids with the concomitant production of acyl-CoA and NADH. The first reaction, catalysed by α-ketoacid decarboxylases (E1 enzymes), needs a thiamine diphosphate cofactor and represents the overall rate-limiting step. Although the catalytic cycles of E1 from the pyruvate dehydrogenase (E1p) and branched-chain α-ketoacid dehydrogenase (E1b) complexes have been elucidated, little structural information is available on E1o, the first component of the α-ketoglutarate dehydrogenase complex, despite the central role of this complex at the branching point between the TCA (tricarboxylic acid) cycle and glutamate metabolism. In the present study, we provide structural evidence that MsKGD, the E1o (α-ketoglutarate decarboxylase) from Mycobacterium smegmatis, shows two conformations of the post-decarboxylation intermediate, each one associated with a distinct enzyme state. We also provide an overall picture of the catalytic cycle, reconstructed by either crystallographic snapshots or modelling. The results of the present study show that the conformational change leading the enzyme from the initial (early) to the late state, although not required for decarboxylation, plays an essential role in catalysis and possibly in the regulation of mycobacterial E1o.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carboxiliasas/metabolismo , Modelos Moleculares , Mycobacterium smegmatis/enzimología , Procesamiento Proteico-Postraduccional , Replegamiento Proteico , Adipatos/química , Adipatos/metabolismo , Transferasas de Aldehído-Cetona/química , Transferasas de Aldehído-Cetona/genética , Transferasas de Aldehído-Cetona/metabolismo , Sustitución de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Carboxiliasas/química , Carboxiliasas/genética , Dominio Catalítico , Descarboxilación , Complejo Cetoglutarato Deshidrogenasa/química , Complejo Cetoglutarato Deshidrogenasa/genética , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Conformación Molecular , Simulación del Acoplamiento Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
6.
Mol Microbiol ; 90(2): 356-66, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23962235

RESUMEN

Alpha-ketoglutarate is a key metabolic intermediate at the crossroads of carbon and nitrogen metabolism, whose fate is tightly regulated. In mycobacteria the protein GarA regulates the tricarboxylic acid cycle and glutamate synthesis by direct binding and regulation of three enzymes that use α-ketoglutarate. GarA, in turn, is thought to be regulated via phosphorylation by protein kinase G and other kinases. We have investigated the requirement for GarA for metabolic regulation during growth in vitro and in macrophages. GarA was found to be essential to Mycobacterium tuberculosis, but dispensable in non-pathogenic Mycobacterium smegmatis. Disruption of garA caused a distinctive, nutrient-dependent phenotype, fitting with its proposed role in regulating glutamate metabolism. The data underline the importance of the TCA cycle and the balance with glutamate synthesis in M. tuberculosis and reveal vulnerability to disruption of these pathways.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genes Bacterianos , Ácidos Cetoglutáricos/metabolismo , Mycobacterium smegmatis/genética , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Línea Celular Tumoral , Ciclo del Ácido Cítrico , Regulación Bacteriana de la Expresión Génica , Ácido Glutámico/metabolismo , Humanos , Macrófagos/microbiología , Mutagénesis Sitio-Dirigida , Mycobacterium smegmatis/metabolismo , Fenotipo , Fosforilación , Proteínas Recombinantes/metabolismo
7.
Nat Commun ; 14(1): 5964, 2023 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-37749098

RESUMEN

The human α7 nicotinic receptor is a pentameric channel mediating cellular and neuronal communication. It has attracted considerable interest in designing ligands for the treatment of neurological and psychiatric disorders. To develop a novel class of α7 ligands, we recently generated two nanobodies named E3 and C4, acting as positive allosteric modulator and silent allosteric ligand, respectively. Here, we solved the cryo-electron microscopy structures of the nanobody-receptor complexes. E3 and C4 bind to a common epitope involving two subunits at the apex of the receptor. They form by themselves a symmetric pentameric assembly that extends the extracellular domain. Unlike C4, the binding of E3 drives an agonist-bound conformation of the extracellular domain in the absence of an orthosteric agonist, and mutational analysis shows a key contribution of an N-linked sugar moiety in mediating E3 potentiation. The nanobody E3, by remotely controlling the global allosteric conformation of the receptor, implements an original mechanism of regulation that opens new avenues for drug design.


Asunto(s)
Anticuerpos de Dominio Único , Receptor Nicotínico de Acetilcolina alfa 7 , Humanos , Receptor Nicotínico de Acetilcolina alfa 7/química , Membrana Celular , Microscopía por Crioelectrón , Diseño de Fármacos , Anticuerpos de Dominio Único/química
8.
J Biol Chem ; 285(53): 41348-55, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-21030587

RESUMEN

The arabinogalactan (AG) of slow growing pathogenic Mycobacterium spp. is characterized by the presence of galactosamine (GalN) modifying some of the interior branched arabinosyl residues. The biosynthetic origin of this substituent and its role(s) in the physiology and/or pathogenicity of mycobacteria are not known. We report on the discovery of a polyprenyl-phospho-N-acetylgalactosaminyl synthase (PpgS) and the glycosyltransferase Rv3779 from Mycobacterium tuberculosis required, respectively, for providing and transferring the GalN substrate for the modification of AG. Disruption of either ppgS (Rv3631) or Rv3779 totally abolished the synthesis of the GalN substituent of AG in M. tuberculosis H37Rv. Conversely, expression of ppgS in Mycobacterium smegmatis conferred upon this species otherwise devoid of ppgS ortholog and any detectable polyprenyl-phospho-N-acetylgalactosaminyl synthase activity the ability to synthesize polyprenyl-phospho-N-acetylgalactosamine (polyprenyl-P-GalNAc) from polyprenyl-P and UDP-GalNAc. Interestingly, this catalytic activity was increased 40-50-fold by co-expressing Rv3632, the encoding gene of a small membrane protein apparently co-transcribed with ppgS in M. tuberculosis H37Rv. The discovery of this novel lipid-linked sugar donor and the involvement of a the glycosyltransferase C-type glycosyltransferase in its transfer onto its final acceptor suggest that pathogenic mycobacteria modify AG on the periplasmic side of the plasma membrane. The availability of a ppgS knock-out mutant of M. tuberculosis provides unique opportunities to investigate the physiological function of the GalN substituent and the potential impact it may have on host-pathogen interactions.


Asunto(s)
Galactanos/química , Galactosamina/química , Mycobacterium tuberculosis/metabolismo , Alelos , Membrana Celular/metabolismo , Glicosilación , Lípidos/química , Modelos Biológicos , Mutación , Mycobacterium smegmatis/metabolismo , Fenotipo , Polisacáridos/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
9.
mBio ; 12(5): e0171721, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34607462

RESUMEN

Signal transduction is essential for bacteria to adapt to changing environmental conditions. Among many forms of posttranslational modifications, reversible protein phosphorylation has evolved as a ubiquitous molecular mechanism of protein regulation in response to specific stimuli. The Ser/Thr protein kinase PknG modulates the fate of intracellular glutamate by controlling the phosphorylation status of the 2-oxoglutarate dehydrogenase regulator OdhI, a function that is conserved among diverse actinobacteria. PknG has a modular organization characterized by the presence of regulatory domains surrounding the catalytic domain. Here, we present an investigation using in vivo experiments, as well as biochemical and structural methods, of the molecular basis of the regulation of PknG from Corynebacterium glutamicum (CgPknG), in the light of previous knowledge available for the kinase from Mycobacterium tuberculosis (MtbPknG). We found that OdhI phosphorylation by CgPknG is regulated by a conserved mechanism that depends on a C-terminal domain composed of tetratricopeptide repeats (TPRs) essential for metabolic homeostasis. Furthermore, we identified a conserved structural motif that physically connects the TPR domain to a ß-hairpin within the flexible N-terminal region that is involved in docking interactions with OdhI. Based on our results and previous reports, we propose a model in which the TPR domain of PknG couples signal detection to the specific phosphorylation of OdhI. Overall, the available data indicate that conserved PknG domains in distant actinobacteria retain their roles in kinase regulation in response to nutrient availability. IMPORTANCE Bacteria control the metabolic processes by which they obtain nutrients and energy in order to adapt to the environment. Actinobacteria, one of the largest bacterial phyla of major importance for biotechnology, medicine, and agriculture, developed a unique control process that revolves around a key protein, the protein kinase PknG. Here, we use genetic, biochemical, and structural approaches to study PknG in a system that regulates glutamate production in Corynebacterium glutamicum, a species used for the industrial production of amino acids. The reported findings are conserved in related Actinobacteria, with broader significance for microorganisms that cause disease, as well as environmental species used industrially to produce amino acids and antibiotics every year.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Repeticiones de Tetratricopéptidos , Aminoácidos/metabolismo , Proteínas Bacterianas/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Regulación Bacteriana de la Expresión Génica , Ácido Glutámico/metabolismo , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fosforilación , Proteínas Quinasas/genética , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal
10.
Nat Commun ; 11(1): 5369, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097732

RESUMEN

GABAA receptors mediate most inhibitory synaptic transmission in the brain of vertebrates. Following GABA binding and fast activation, these receptors undergo a slower desensitization, the conformational pathway of which remains largely elusive. To explore the mechanism of desensitization, we used concatemeric α1ß2γ2 GABAA receptors to selectively introduce gain-of-desensitization mutations one subunit at a time. A library of twenty-six mutant combinations was generated and their bi-exponential macroscopic desensitization rates measured. Introducing mutations at the different subunits shows a strongly asymmetric pattern with a key contribution of the γ2 subunit, and combining mutations results in marked synergistic effects indicating a non-concerted mechanism. Kinetic modelling indeed suggests a pathway where subunits move independently, the desensitization of two subunits being required to occlude the pore. Our work thus hints towards a very diverse and labile conformational landscape during desensitization, with potential implications in physiology and pharmacology.


Asunto(s)
Sistema Nervioso/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Transmisión Sináptica/fisiología , Animales , Simulación por Computador , Canales Iónicos , Transporte Iónico , Cinética , Modelos Moleculares , Conformación Molecular , Mutación , Oocitos , Conformación Proteica , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores de GABA-A/genética , Xenopus laevis/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda