Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nucleic Acids Res ; 48(6): e32, 2020 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-31974573

RESUMEN

In neurons, the specific spatial and temporal localization of protein synthesis is of great importance for function and survival. Here, we visualized tRNA and protein synthesis events in fixed and live mouse primary cortical culture using fluorescently-labeled tRNAs. We were able to characterize the distribution and transport of tRNAs in different neuronal sub-compartments and to study their association with the ribosome. We found that tRNA mobility in neural processes is lower than in somata and corresponds to patterns of slow transport mechanisms, and that larger tRNA puncta co-localize with translational machinery components and are likely the functional fraction. Furthermore, chemical induction of long-term potentiation (LTP) in culture revealed up-regulation of mRNA translation with a similar effect in dendrites and somata, which appeared to be GluR-dependent 6 h post-activation. Importantly, measurement of protein synthesis in neurons with high resolutions offers new insights into neuronal function in health and disease states.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Neuronas/metabolismo , Biosíntesis de Proteínas , ARN de Transferencia/metabolismo , Animales , Compartimento Celular , Células Cultivadas , Dendritas/metabolismo , Colorantes Fluorescentes/metabolismo , Potenciación a Largo Plazo , Masculino , Ratones Endogámicos C57BL , Neuroglía/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribosomas/metabolismo
2.
J Neurosci ; 38(3): 648-658, 2018 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-29196323

RESUMEN

Protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) is one of four known kinases that respond to cellular stress by deactivating the eukaryotic initiation factor 2 α (eIF2α) or other signal transduction cascades. Recently, both eIF2α and its kinases were found to play a role in normal and pathological brain function. Here, we show that reduction of either the amount or the activity of PERK, specifically in the CA1 region of the hippocampus in young adult male mice, enhances neuronal excitability and improves cognitive function. In addition, this manipulation rescues the age-dependent cellular phenotype of reduced excitability and memory decline. Specifically, the reduction of PERK expression in the CA1 region of the hippocampus of middle-aged male mice using a viral vector rejuvenates hippocampal function and improves hippocampal-dependent learning. These results delineate a mechanism for behavior and neuronal aging and position PERK as a promising therapeutic target for age-dependent brain malfunction.SIGNIFICANCE STATEMENT We found that local reduced protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK) expression or activity in the hippocampus enhances neuronal excitability and cognitive function in young normal mice, that old CA1 pyramidal cells have reduced excitability and increased PERK expression that can be rescued by reducing PERK expression in the hippocampus, and that reducing PERK expression in the hippocampus of middle-aged mice enhances hippocampal-dependent learning and memory and restores it to normal performance levels of young mice. These findings uncover an entirely new biological link among PERK, neuronal intrinsic properties, aging, and cognitive function. Moreover, our findings propose a new way to fight mild cognitive impairment and aging-related cognitive deterioration.


Asunto(s)
Envejecimiento/fisiología , Cognición/fisiología , Hipocampo/enzimología , Hipocampo/metabolismo , Memoria/fisiología , eIF-2 Quinasa/metabolismo , Adenina/análogos & derivados , Adenina/farmacología , Animales , Cognición/efectos de los fármacos , Disfunción Cognitiva/enzimología , Inhibidores Enzimáticos/farmacología , Indoles/farmacología , Aprendizaje/efectos de los fármacos , Aprendizaje/fisiología , Masculino , Memoria/efectos de los fármacos , Ratones , Células Piramidales/efectos de los fármacos , Células Piramidales/enzimología
3.
Cereb Cortex ; 27(3): 2226-2248, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-27005990

RESUMEN

Alterations in the balance of inhibitory and excitatory synaptic transmission have been implicated in the pathogenesis of neurological disorders such as epilepsy. Eukaryotic elongation factor 2 kinase (eEF2K) is a highly regulated, ubiquitous kinase involved in the control of protein translation. Here, we show that eEF2K activity negatively regulates GABAergic synaptic transmission. Indeed, loss of eEF2K increases GABAergic synaptic transmission by upregulating the presynaptic protein Synapsin 2b and α5-containing GABAA receptors and thus interferes with the excitation/inhibition balance. This cellular phenotype is accompanied by an increased resistance to epilepsy and an impairment of only a specific hippocampal-dependent fear conditioning. From a clinical perspective, our results identify eEF2K as a potential novel target for antiepileptic drugs, since pharmacological and genetic inhibition of eEF2K can revert the epileptic phenotype in a mouse model of human epilepsy.


Asunto(s)
Quinasa del Factor 2 de Elongación/metabolismo , Epilepsia/enzimología , Neuronas/enzimología , Transmisión Sináptica/fisiología , Animales , Células Cultivadas , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/enzimología , Corteza Cerebral/patología , Condicionamiento Psicológico/fisiología , Modelos Animales de Enfermedad , Quinasa del Factor 2 de Elongación/antagonistas & inhibidores , Quinasa del Factor 2 de Elongación/genética , Epilepsia/patología , Miedo/fisiología , Hipocampo/efectos de los fármacos , Hipocampo/enzimología , Hipocampo/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Neuronas/efectos de los fármacos , Neuronas/patología , Ratas Sprague-Dawley , Receptores de GABA-A/metabolismo , Sinapsinas/genética , Sinapsinas/metabolismo , Transmisión Sináptica/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo
4.
J Neurosci ; 35(38): 12986-93, 2015 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-26400930

RESUMEN

Sporadic Alzheimer's disease (AD) is an incurable neurodegenerative disease with clear pathological hallmarks, brain dysfunction, and unknown etiology. Here, we tested the hypothesis that there is a link between genetic risk factors for AD, cellular metabolic stress, and transcription/translation regulation. In addition, we aimed at reversing the memory impairment observed in a mouse model of sporadic AD. We have previously demonstrated that the most prevalent genetic risk factor for AD, the ApoE4 allele, is correlated with increased phosphorylation of the translation factor eIF2α. In the present study, we tested the possible involvement of additional members of the eIF2α pathway and identified increased mRNA expression of negative transcription factor ATF4 (aka CREB2) both in human and a mouse model expressing the human ApoE4 allele. Furthermore, injection of a PKR inhibitor rescued memory impairment and attenuated ATF4 mRNA increased expression in the ApoE4 mice. The results propose a new mechanism by which ApoE4 affects brain function and further suggest that inhibition of PKR is a way to restore ATF4 overexpression and memory impairment in early stages of sporadic AD. Significance statement: ATF4 mRNA relative quantities are elevated in ApoE4 allele carriers compared with noncarrier controls. This is true also for the ApoE ε4 human replacement mice. ApoE4 mice injected with PKR inhibitor (PKRi) demonstrate a significant reduction in ATF4 expression levels 3 h after one injection of PKRi. Treatment of ApoE4 human replacement mice with the PKRi before learning rescues the memory impairment of the ApoE4 AD model mice. We think that these results propose a new mechanism by which ApoE4 affects brain function and suggest that inhibition of PKR is a way to restore memory impairment in early stages of sporadic AD.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Apolipoproteína E4/genética , Inhibidores Enzimáticos/uso terapéutico , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Proteínas Quinasas/metabolismo , Factor de Transcripción Activador 4/genética , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Animales , Apolipoproteína E3/genética , Condicionamiento Psicológico/fisiología , Miedo/psicología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Técnicas In Vitro , Masculino , Trastornos de la Memoria/tratamiento farmacológico , Ratones , Ratones Transgénicos , Fosforilación/efectos de los fármacos , Fosforilación/genética , ARN Mensajero/metabolismo , Estadísticas no Paramétricas
5.
Mol Divers ; 20(4): 805-819, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27480630

RESUMEN

Protein kinase RNA-activated (PKR) plays an important role in a broad range of intracellular regulatory mechanisms and in the pathophysiology of many human diseases, including microbial and viral infections, cancer, diabetes and neurodegenerative disorders. Recently, several potent PKR inhibitors have been synthesized. However, the enzyme's multifunctional character and a multitude of PKR downstream targets have prevented the successful transformation of such inhibitors into effective drugs. Thus, the need for additional PKR inhibitors remains. With the help of computer-aided drug-discovery tools, we designed and synthesized potential PKR inhibitors. Indeed, two compounds were found to inhibit recombinant PKR in pharmacologically relevant concentrations. One compound, 6-amino-3-methyl-2-oxo-N-phenyl-2,3-dihydro-1H-benzo[d]imidazole-1-carboxamide, also showed anti-apoptotic properties. The novel molecules diversify the existing pool of PKR inhibitors and provide a basis for the future development of compounds based on PKR signal transduction mechanism.


Asunto(s)
Diseño de Fármacos , Modelos Moleculares , Inhibidores de Proteínas Quinasas/química , eIF-2 Quinasa/química , Sitios de Unión , Dominio Catalítico , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad Cuantitativa , eIF-2 Quinasa/antagonistas & inhibidores
6.
Brain Behav Immun ; 45: 80-97, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25449577

RESUMEN

Interleukin-10 (IL-10) is a cytokine classically linked with anti-inflammatory and protective functions in the central nervous system (CNS) in different neurodegenerative and neuroinflammatory conditions. In order to study the specific role of local CNS produced IL-10, we have created a new transgenic mouse line with astrocyte-targeted production of IL-10 (GFAP-IL10Tg). In the present study, the effects of local CNS IL-10 production on microglia, astrocytes and neuronal connectivity under basal conditions were investigated using immunohistochemistry, molecular biology techniques, electrophysiology and behavioural studies. Our results showed that, in GFAP-IL10Tg animals, microglia displayed an increase in density and a specific activated phenotype characterised by morphological changes in specific areas of the brain including the hippocampus, cortex and cerebellum that correlated with the level of transgene expressed IL-10 mRNA. Distinctively, in the hippocampus, microglial cells adopted an elongated morphology following the same direction as the dendrites of pyramidal neurons. Moreover, this IL-10-induced microglial phenotype showed increased expression of certain molecules including Iba1, CD11b, CD16/32 and F4/80 markers, "de novo" expression of CD150 and no detectable levels of either CD206 or MHCII. To evaluate whether this specific activated microglial phenotype was associated with changes in neuronal activity, the electrophysiological properties of pyramidal neurons of the hippocampus (CA3-CA1) were analysed in vivo. We found a lower excitability of the CA3-CA1 synapses and absence of long-term potentiation (LTP) in GFAP-IL10Tg mice. This study is the first description of a transgenic mouse with astrocyte-targeted production of the cytokine IL-10. The findings indicate that IL-10 induces a specific activated microglial phenotype concomitant with changes in hippocampal LTP responses. This transgenic animal will be a very useful tool to study IL-10 functions in the CNS, not only under basal conditions, but also after different experimental lesions or induced diseases.


Asunto(s)
Astrocitos/metabolismo , Región CA1 Hipocampal/metabolismo , Región CA3 Hipocampal/metabolismo , Interleucina-10/genética , Microglía/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Animales , Antígenos de Diferenciación/metabolismo , Astrocitos/citología , Región CA1 Hipocampal/citología , Región CA3 Hipocampal/citología , Antígeno CD11b/metabolismo , Proteínas de Unión al Calcio/metabolismo , Cerebelo/citología , Cerebelo/metabolismo , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Dendritas/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Hipocampo/citología , Hipocampo/metabolismo , Potenciación a Largo Plazo/genética , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Microglía/citología , Vías Nerviosas/metabolismo , Neuronas/citología , Fenotipo , Receptores de IgG/metabolismo , Sinapsis/metabolismo
7.
Neurochem Res ; 38(7): 1324-32, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23536022

RESUMEN

Glutamate (Glu), the major excitatory amino acid, activates a wide variety of signal transduction cascades. Synaptic plasticity relies on activity-dependent differential protein expression. Glu receptors have been critically involved in long-term synaptic changes, although recent findings suggest that Na(+)-dependent Glu transporters participate in Glu-induced signalling. Within the cerebellum, Bergmann glia cells are in close proximity to glutamatergic synapses and through their receptors and transporters, sense and respond to neuronal glutamatergic activity. Translational control represents the fine-tuning stage of protein expression regulation and Glu modulates this event in glial cells. In this context, we decided to explore the involvement of Glu receptors and transporters in the regulation of the initiation phase of protein synthesis. To this end, Bergmann glia cells were exposed to glutamatergic ligands and the serine 51-phosphorylation pattern of the main regulator of the initiation phase of translation, namely the α subunit of eukaryotic initiation factor 2 (eIF2α), determined. A time and dose-dependent increase in eIF2α phosphorylation was detected. The signalling cascade included Ca(2+) influx, activation of the Ca(2+)/calmodulin-dependent protein kinase II and protein kinase C. These results provide an insight into the molecular targets of the Glu effects at the translational level and strengthen the notion of the critical involvement of glia cells in glutamatergic synaptic function.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Ácido Glutámico/fisiología , Neuroglía/metabolismo , Biosíntesis de Proteínas/fisiología , Animales , Western Blotting , Células Cultivadas , Embrión de Pollo , Electroforesis en Gel de Poliacrilamida , Neuroglía/citología , Fosforilación , Transducción de Señal
8.
Brain Sci ; 11(8)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34439675

RESUMEN

Astrocytes support and modulate neuronal activity through the release of L-lactate. The suggested roles of astrocytic lactate in the brain encompass an expanding range of vital functions, including central control of respiration and cardiovascular performance, learning, memory, executive behaviour and regulation of mood. Studying the effects of astrocytic lactate requires tools that limit the release of lactate selectively from astrocytes. Here, we report the validation in vitro of novel molecular constructs derived from enzymes originally found in bacteria, that when expressed in astrocytes, interfere with lactate handling. When lactate 2-monooxygenase derived from M. smegmatis was specifically expressed in astrocytes, it reduced intracellular lactate pools as well as lactate release upon stimulation. D-lactate dehydrogenase derived from L. bulgaricus diverts pyruvate towards D-lactate production and release by astrocytes, which may affect signalling properties of lactate in the brain. Together with lactate oxidase, which we have previously described, this set of transgenic tools can be employed to better understand astrocytic lactate release and its role in the regulation of neuronal activity in different behavioural contexts.

9.
Front Mol Neurosci ; 13: 67, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32499677

RESUMEN

Dopamine, alongside other neuromodulators, defines brain and neuronal states, inter alia through regulation of global and local mRNA translation. Yet, the signaling pathways underlying the effects of dopamine on mRNA translation and psychiatric disorders are not clear. In order to examine the molecular pathways downstream of dopamine receptors, we used genetic, pharmacologic, biochemical, and imaging methods, and found that activation of dopamine receptor D1 but not D2 leads to rapid dephosphorylation of eEF2 at Thr56 but not eIF2α in cortical primary neuronal culture in a time-dependent manner. NMDA receptor, mTOR, and ERK pathways are upstream of the D1 receptor-dependent eEF2 dephosphorylation and essential for it. Furthermore, D1 receptor activation resulted in a major reduction in dendritic eEF2 phosphorylation levels. D1-dependent eEF2 dephosphorylation results in an increase of BDNF and synapsin2b expression which was followed by a small yet significant increase in general protein synthesis. These results reveal the role of dopamine D1 receptor in the regulation of eEF2 pathway translation in neurons and present eEF2 as a promising therapeutic target for addiction and depression as well as other psychiatric disorders.

10.
Curr Biol ; 30(18): 3507-3521.e7, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32707059

RESUMEN

Levels of adult neurogenesis in the dentate gyrus (DG) of the hippocampus are correlated with unique cognitive functions. However, the molecular pathways controlling it are poorly understood. Here, we found that the known physiological ways to enhance neurogenesis converged on the eEF2/eEF2K pathway via AMPK in the DG. Enhancing the elongation phase of mRNA translation in eEF2K-knockout (eEF2K-KO) mice induced the expression of neurogenesis-related proteins in the hippocampus. We thus tested the hypothesis that inducing eEF2K-KO in mature neurons of the DG controls neurogenesis. Indeed, both general eEF2K-KO and targeted KO in DG excitatory mature neurons resulted in enhanced neurogenesis levels and upregulation of neurogenesis-related proteins. Increased neurogenesis was correlated with enhanced performance in DG-dependent learning. Moreover, general and local eEF2K-KO in old mice rejuvenated the DG, paving the way for better mechanistic understanding of how neurogenesis is controlled in the mature DG and possible treatments for incurable aging-associated diseases.


Asunto(s)
Cognición/fisiología , Giro Dentado/metabolismo , Quinasa del Factor 2 de Elongación/fisiología , Hipocampo/metabolismo , Neurogénesis , Neuronas/citología , Animales , Masculino , Ratones , Ratones Noqueados , Neuronas/metabolismo , Fosforilación , Transducción de Señal
11.
Neurochem Int ; 52(6): 1167-75, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18222016

RESUMEN

Glutamate, the main excitatory amino acid transmitter regulates protein biosynthesis at the transcriptional and translational levels. It is critically involved in the continuous change of the protein repertoire that is inherent to synaptic plasticity. Activity-dependent differential gene expression occurs both in neurons and glial cells. In fact, besides a membrane to nuclei signaling that leads to transcriptional control, a biphasic effect in overall protein synthesis takes place after glutamate receptors stimulation in cultured chick cerebellar Bergmann glia. Therefore, the effect of glutamate receptors activation on translation elongation was characterized. A time- and dose-dependent increase in eukaryotic elongation factor-2 phosphorylation was found. Pharmacological tools established that alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate and Kainate, but not N-methyl-d-aspartate trigger this phosphorylation. The removal of external Ca2+ or the pre-treatment with a calmodulin antagonist prevented the glutamate effect. Accordingly, glutamate receptors regulate eukaryotic elongation factor-2 kinase phosphorylation through the involvement of Ca2+/calmodulin/extracellular-regulated protein kinases 1/2. These results demonstrate that glutamate receptors regulate the elongation of peptide chains in glial cells.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Ácido Glutámico/metabolismo , Proteínas del Tejido Nervioso/biosíntesis , Neuroglía/metabolismo , Receptores de Glutamato/metabolismo , Transducción de Señal/fisiología , Animales , Señalización del Calcio/efectos de los fármacos , Señalización del Calcio/fisiología , Corteza Cerebelosa/metabolismo , Embrión de Pollo , Relación Dosis-Respuesta a Droga , Factor 2 Eucariótico de Iniciación/efectos de los fármacos , Agonistas de Aminoácidos Excitadores/farmacología , Ácido Glutámico/farmacología , Proteínas del Tejido Nervioso/genética , Neuroglía/efectos de los fármacos , Péptidos/genética , Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Quinasas/metabolismo , Receptores de Glutamato/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
12.
Front Mol Neurosci ; 11: 480, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30686999

RESUMEN

Aging is a major risk factor for many diseases including metabolic syndrome, cancer, inflammation, and neurodegeneration. Identifying mechanistic common denominators underlying the impact of aging is essential for our fundamental understanding of age-related diseases and the possibility to propose new ways to fight them. One can define aging biochemically as prolonged metabolic stress, the innate cellular and molecular programs responding to it, and the new stable or unstable state of equilibrium between the two. A candidate to play a role in the process is protein kinase R (PKR), first identified as a cellular protector against viral infection and today known as a major regulator of central cellular processes including mRNA translation, transcriptional control, regulation of apoptosis, and cell proliferation. Prolonged imbalance in PKR activation is both affected by biochemical and metabolic parameters and affects them in turn to create a feedforward loop. Here, we portray the central role of PKR in transferring metabolic information and regulating cellular function with a focus on cancer, inflammation, and brain function. Later, we integrate information from open data sources and discuss current knowledge and gaps in the literature about the signaling cascades upstream and downstream of PKR in different cell types and function. Finally, we summarize current major points and biological means to manipulate PKR expression and/or activation and propose PKR as a therapeutic target to shift age/metabolic-dependent undesired steady states.

13.
Biol Psychiatry ; 84(1): 65-75, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395043

RESUMEN

BACKGROUND: Ketamine is an N-methyl-D-aspartate receptor antagonist, which on administration produces fast-acting antidepressant responses in patients with major depressive disorder. Yet, the mechanism underlying the antidepressant action of ketamine remains unclear. METHODS: To unravel the mechanism of action of ketamine, we treated wild-type C57BL/6 mice with calcium/calmodulin-dependent protein kinase II (CaMKII) specific inhibitor tatCN21 peptide. We also used eukaryotic elongation factor 2 kinase (eEF2K) (also known as CaMKIII) knockout mice. We analyzed the effects biochemically and behaviorally, using the forced swim, tail suspension, and novelty suppressed feeding tests. RESULTS: Consistent with the literature, one of the major pathways mediating the antidepressant action of ketamine was reduction of phosphorylation of eEF2 via eEF2K. Specifically, knocking out eEF2K in mice eliminated phosphorylation of eEF2 at threonine at position 56, resulting in increased protein synthesis, and made mice resistant both biochemically and behaviorally to the antidepressant effects of ketamine. In addition, administration of ketamine led to differential regulation of CaMKII function, manifested as autoinhibition (pT305 phosphorylation) followed by autoactivation (pT286) of CaMKIIα in the hippocampus and cortex. The inhibition phase of CaMKII, which lasted 10 to 20 minutes after administration of ketamine, occurred concurrently with eEF2K-dependent increased protein synthesis. Moreover, ketamine administration-dependent delayed induction of GluA1 (24 hours) was regulated by the activation of CaMKII. Importantly, systemic administration of the CaMKII inhibitor tatCN21 increased global protein synthesis and induced behavioral resistance to ketamine. CONCLUSIONS: Our data suggest that drugs that selectively target CaMKs and regulate protein synthesis offer novel strategies for treatment of major depressive disorder.


Asunto(s)
Antidepresivos/uso terapéutico , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Depresión/tratamiento farmacológico , Quinasa del Factor 2 de Elongación/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Ketamina/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Quinasa del Factor 2 de Elongación/genética , Inhibidores Enzimáticos/farmacología , Conducta Alimentaria/efectos de los fármacos , Regulación de la Expresión Génica/genética , Suspensión Trasera/psicología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Péptidos/farmacología , Inhibidores de la Síntesis de la Proteína/farmacología , Puromicina/farmacología , Receptores AMPA/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Natación/psicología
14.
Front Mol Neurosci ; 7: 66, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25100942

RESUMEN

Understanding the heterosynaptic interaction between glutamatergic and neuromodulatory synapses is highly important for revealing brain function in health and disease. For instance, the interaction between dopamine and glutamate neurotransmission is vital for memory and synaptic plasticity consolidation, and it is known to converge on extracellular signal-regulated kinase (ERK)-MAPK signaling in neurons. Previous studies suggest that dopamine induces N-methyl-D-aspartate (NMDA) receptor phosphorylation at the NR2B Y1472 subunit, influencing receptor internalization at the synaptic plasma membrane. However, it is unclear whether this phosphorylation is upstream to and/or necessary for ERK1/2 activation, which is known to be crucial for synaptic plasticity and memory consolidation. Here, we tested the hypothesis that tyrosine phosphorylation of NR2B at Y1472 is correlated with ERK1/2 activation by dopamine and necessary for it as well. We find that dopamine receptor D1, but not D2, activates ERK1/2 and leads to NR2BY1472 phosphorylation in the mature hippocampus and cortex. Moreover, our results indicate that NR2B Y1472 phosphorylation is necessary for ERK1/2 activation. Importantly, application of dopamine or the D1 receptor agonist SKF38393 to hippocampal slices from NR2B F1472 mutant mice did not result in ERK1/2 activation, suggesting this site is not only correlated with ERK1/2 activation by dopamine stimulation, but also necessary for it. In addition, NR2B F1472 mice show impairment in learning of attenuation of taste neophobia but not associative taste learning. Our study shows that the dopaminergic and glutamatergic transmission converge on the NMDA receptor itself, at the Y1472 site of the NR2B subunit, and that this convergence is essential for ERK1/2 activation in the mature brain and for processing new sensory information in the cortex.

15.
Neurochem Int ; 57(7): 795-803, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20817065

RESUMEN

Glutamate, the major excitatory transmitter in the vertebrate brain, is involved in neuronal development and synaptic plasticity. Glutamatergic stimulation leads to differential gene expression patterns in neuronal and glial cells. A glutamate-dependent transcriptional control has been established for several genes. However, much less is known about the molecular events that modify the translational machinery upon exposure to this neurotransmitter. In a glial model of cerebellar cultured Bergmann cells, glutamate induces a biphasic effect on [(35)S]-methionine incorporation into proteins that suggests that the elongation phase of protein biosynthesis is the target for regulation. Indeed, after a 15 min exposure to glutamate a transient increase in elongation factor 2 phosphorylation has been reported, an effect mediated through the activation of the elongation factor 2 kinase. In this contribution, we sought to characterize the phosphorylation status of the eukaryotic elongation factor 1A (eEF1A) and the ribosomal transit time under glutamate exposure. A dose-dependent increase in eEF1A phosphorylation was found after a 60 min glutamate treatment; this phenomenon is Ca(2+)/CaM dependent, blocked with Src and phosphatidyl-inositol 3-kinase inhibitors and with rapamicyn. Concomitantly, the ribosomal transit time was increased with a 15 min glutamate exposure. After 60 more minutes, the average time used by the ribosomes to complete a polypeptide chain had almost returned to its initial level. These results strongly suggest that glutamate exerts an exquisite time-dependent translational control in glial cells, a process that might be critical for glia-neuron interactions.


Asunto(s)
Ácido Glutámico/fisiología , Neuroglía/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Ribosomas/metabolismo , Animales , Comunicación Celular/genética , Células Cultivadas , Embrión de Pollo , Ácido Glutámico/metabolismo , Factor 1 de Elongación Peptídica/genética , Fosforilación/genética , Biosíntesis de Proteínas , Transporte de Proteínas/genética , Ratas , Receptores de Glutamato/fisiología , Ribosomas/genética , Transducción de Señal/genética , Treonina/metabolismo , Factores de Tiempo , Células Tumorales Cultivadas
16.
Neurochem Int ; 55(5): 282-7, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19576515

RESUMEN

Glutamate, the major excitatory neurotransmitter in the mammalian central nervous system, plays an important role in neuronal development and synaptic plasticity. It activates a variety of signaling pathways that regulate gene expression at the transcriptional and translational levels. Within glial cells, besides transcription, glutamate also regulates translation initiation and elongation. The mammalian target of rapamycin (mTOR), a key participant in the translation process, represents an important regulatory locus for translational control. Therefore, in the present communication we sought to characterize the mTOR phosphorylation pattern after glutamate treatment in chick cerebellar Bergmann glia primary cultures. A time- and dose-dependent increase in mTOR Ser 2448 phosphorylation was found. Pharmacological tools established that the glutamate effect is mediated through ionotropic and metabotropic receptors and interestingly, the glutamate transporter system is also involved. The signaling cascade triggered by glutamate includes an increase in intracellular Ca2+ levels, and the activation of the p60(Src)/PI-3K/PKB pathway. These results suggest that glia cells participate in the activity-dependent change in the brain protein repertoire.


Asunto(s)
Ácido Glutámico/farmacología , Neuroglía/efectos de los fármacos , Proteínas Quinasas/metabolismo , Animales , Células Cultivadas , Pollos , Electroforesis en Gel de Poliacrilamida , Neuroglía/metabolismo , Fosforilación , Proteínas Quinasas/química , Serina/metabolismo , Serina-Treonina Quinasas TOR
17.
Neurochem Res ; 33(7): 1277-85, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18270822

RESUMEN

Glutamate (Glu) is the major excitatory neurotransmitter in the Central Nervous System (CNS). Ionotropic and metabotropic glutamate receptors (GluRs) are present in neurons and glial cells and are involved in gene expression regulation. Mitogen-activated proteins kinases (MAPK) are critical for all the membrane to nuclei signaling pathways described so far. In cerebellar Bergmann glial cells, glutamate-dependent transcriptional regulation is partially dependent on p42/44 MAPK activity. Another member of this kinase family, p38 MAPK is activated by non-mitogenic stimuli through its Thr180/Tyr182 phosphorylation and phosphorylates cytoplasmic and nuclear protein targets involved in translational and transcriptional events. Taking into consideration that the role of p38MAPK in glial cells is not well understood, we demonstrate here that glutamate increases p38 MAPK phosphorylation in a time and dose dependent manner in cultured chick cerebellar Bergmann glial cells (BGC). Moreover, p38 MAPK is involved in the glutamate-induced transcriptional activation in these cells. Ionotropic as well as metabotropic glutamate receptors participate in p38 MAPK activation. The present findings demonstrate the involvement of p38 MAPK in glutamate-dependent gene expression regulation in glial cells.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Ácido Glutámico/fisiología , Neuroglía/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/fisiología , Animales , Western Blotting , Células Cultivadas , Embrión de Pollo , ADN/biosíntesis , ADN/genética , Electroforesis en Gel de Poliacrilamida , Ensayo de Cambio de Movilidad Electroforética , Ácido Glutámico/farmacología , Histonas/biosíntesis , Fosforilación , Receptores de Glutamato/biosíntesis , Receptores de Glutamato/genética , Estimulación Química , Factor de Transcripción AP-1/genética , Transfección , Proteínas Quinasas p38 Activadas por Mitógenos/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda