Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Reproduction ; 165(4): 407-416, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757298

RESUMEN

In brief: miR-23b-3p expression is increased in fertile endometrium during receptivity. This study investigates the function of miR-23b-3p on endometrial adhesion and its downstream targets. Abstract: The human endometrium undergoes dramatic remodeling throughout the menstrual cycle that is essential for successful blastocyst attachment and implantation in the mid-secretory (receptive) phase. microRNA (miR) plays a role in the preparation of endometrial receptivity. miR-23b-3p expression is increased in fertile endometrium during receptivity. Here, we aimed to investigate miR-23b-3p function during receptivity. qPCR and in situ hybridization were used to investigate the expression and localization of miR-23b-3p in human endometrium, respectively. Ishikawa cells (endometrial epithelial cell line) and endometrial organoid-derived epithelial cells were transfected with miR-23b-3p mimic, and trophoblast progenitor spheroid (blastocyst surrogate) adhesion assay was used to determine effects on blastocyst adhesion to endometrial cells. We demonstrated that miR-23b-3p was significantly upregulated in the fertile endometrium of the receptive phase compared to the non-receptive, proliferative phase. No difference was identified for the expression of miR-23b-3p between fertile and infertile mid-secretory phase endometrium. miR-23b-3p localized to the epithelium and stroma in the mid-secretory phase but was undetectable in the proliferative phase of fertile endometrium. Functionally, miR-23-3p overexpression in Ishikawa cells and fertile endometrial organoid-derived epithelial cells significantly improved their adhesive capacity to trophoblast progenitor spheroids. miR-23b-3p overexpression in infertile endometrial organoid-derived epithelial cells did not improve adhesion. Among 10 miR-predicted gene targets examined, miR-23b-3p overexpression in Ishikawa cells significantly reduced the expression of MET, secreted frizzled-related protein 4 (SFRP4) and acyl-CoA dehydrogenase short/branched chain (ACADSB) compared to control. The reduction of SFRP4 after miR23b-3p overexpression was confirmed by immunoblotting in fertile organoid-derived epithelial cells. SFRP4 expression in fertile endometrium exhibited an inverse expression pattern compared to miR-23b-3p and was higher in the proliferative phase compared to the mid-secretory phase. Overall, miR-23b-3p is likely a critical regulator of endometrial epithelial adhesion and receptivity.


Asunto(s)
Implantación del Embrión , MicroARNs , Femenino , Humanos , Implantación del Embrión/genética , Endometrio/metabolismo , Células Epiteliales/metabolismo , Ciclo Menstrual/genética , Ciclo Menstrual/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Adhesión Celular
2.
Biol Methods Protoc ; 9(1): bpae032, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070184

RESUMEN

Extracellular vesicles (EVs), including exosomes, have significant potential for diagnostic and therapeutic applications. The lack of standardized methods for efficient and high-throughput isolation and analysis of EVs, however, has limited their widespread use in clinical practice. Surface epitope immunoaffinity (SEI) isolation utilizes affinity ligands, including antibodies, aptamers, or lectins, that target specific surface proteins present on EVs. Paramagnetic bead-SEI isolation represents a fit-for-purpose solution for the reproducible, high-throughput isolation of EVs from biofluids and downstream analysis of RNA, protein, and lipid biomarkers that is compatible with clinical laboratory workflows. This study evaluates a new SEI isolation method for enriching subpopulations of EVs. EVs were isolated from human plasma using a bead-based SEI method designed for on-bead and downstream analysis of EV-associated RNA and protein biomarkers. Western blot analysis confirmed the presence of EV markers in the captured nanoparticles. Mass spectrometry analysis of the SEI lysate identified over 1500 proteins, with the top 100 including known EV-associated proteins. microRNA (miRNA) sequencing followed by RT-qPCR analysis identified EV-associated miRNA transcripts. Using SEI, EVs were isolated using automated high-throughput particle moving instruments, demonstrating equal or higher protein and miRNA yield and recovery compared to manual processing. SEI is a rapid, efficient, and high-throughput method for isolating enriched populations of EVs; effectively reducing contamination and enabling the isolation of a specific subpopulation of EVs. In this study, high-throughput EV isolation and RNA extraction have been successfully implemented. This technology holds great promise for advancing the field of EV research and facilitating their application for biomarker discovery and clinical research.

3.
Front Endocrinol (Lausanne) ; 14: 1149786, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37008948

RESUMEN

Introduction: A healthy pregnancy requires successful blastocyst implantation into an adequately prepared or 'receptive' endometrium. Decidualization of uterine endometrial stromal fibroblast cells (hESF) is critical for the establishment of a healthy pregnancy. microRNAs (miRs) are critical regulators of cellular function that can be released by a donor cell to influence the physiological state of recipient cells. We aimed to determine how decidualization affects hESF miR release and investigated the function of one decidualization regulated miR, miR-19b-3p, previously shown to be associated with recurrent pregnancy loss. Method: miR release by hESF was determined by miR microarray on culture media from hESF decidualized in vitro for 3 and 14 days by treatment with oestradiol and medroxyprogesterone acetate. Cellular and whole endometrial/decidual tissue miR expression was quantified by qPCR and localized by in situ hybridization. The function of miR-19b-3p in HTR8/Svneo trophoblast cells was investigated using real time cell analysis (xCELLigence) and gene expression qPCR. Results: From our miR screen we found that essentially all hESF miR release was reduced following in vitro decidualization, significantly so for miR-17-5p, miR-21-3p, miR-34c-3p, miR-106b-5p, miR-138-5p, miR-296-5p, miR-323a-3p, miR-342-3p, miR-491-5p, miR-503-5p and miR-542-5p. qPCR demonstrated that miR-19b-3p, 181a-2-3p and miR-409-5p likewise showed a significant reduction in culture media following decidualization but no change was found in cellular miR expression following decidualization. In situ hybridization localized miR-19b-3p to epithelial and stromal cells in the endometrium and qPCR identified that miR-19b-3p was significantly elevated in the cycling endometrium of patients with a history of early pregnancy loss compared to normally fertile controls. Functionally, overexpression of miR-19b-3p significantly reduced HTR8/Svneo trophoblast proliferation and increased HOXA9 expression. Discussion: Our data demonstrates that decidualization represses miR release by hESFs and overexpression of miR-19b-3p was found in endometrial tissue from patients with a history of early pregnancy loss. miR-19b-3p impaired HTR8/Svneo proliferation implying a role in trophoblast function. Overall we speculate that miR release by hESF may regulate other cell types within the decidua and that appropriate release of miRs by decidualized hESF is essential for healthy implantation and placentation.


Asunto(s)
Aborto Espontáneo , MicroARNs , Embarazo , Femenino , Humanos , Trofoblastos/metabolismo , Aborto Espontáneo/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Células del Estroma/metabolismo , Medios de Cultivo/metabolismo
4.
Front Endocrinol (Lausanne) ; 13: 1067648, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589798

RESUMEN

Introduction: Embryo implantation failure leads to infertility. As an important approach to regulate implantation, endometrial epithelial cells produce and secrete factors apically into the uterine cavity in the receptive phase to prepare the initial blastocyst adhesion and implantation. Organoids were recently developed from human endometrial epithelium with similar apical-basal polarity compared to endometrial gland making it an ideal model to study endometrial epithelial secretions. Methods: Endometrial organoids were established using endometrial biopsies from women with primary infertility and normal fertility. Fertile and infertile organoids were treated with hormones to model receptive phase of the endometrial epithelium and intra-organoid fluid (IOF) was collected to compare the apical protein secretion profile and function on trophoblast cell adhesion. Results: Our data show that infertile organoids were dysregulated in their response to estrogen and progesterone treatment. Proteomic analysis of organoid apical secretions identified 150 dysregulated proteins between fertile and infertile groups (>1.5-fold change). Trophoblast progenitor spheroids (blastocyst surrogates) treated with infertile organoid apical secretions significantly compromised their adhesion to organoid epithelial cell monolayers compared to fertile group (P < 0.0001). Discussion: This study revealed that endometrial organoid apical secretions alter trophoblast cell adhesiveness relative to fertility status of women. It paves the way to determine the molecular mechanisms by which endometrial epithelial apical released factors regulate blastocyst initial attachment and implantation.


Asunto(s)
Infertilidad Femenina , Trofoblastos , Humanos , Femenino , Trofoblastos/metabolismo , Proteómica , Endometrio/metabolismo , Útero/metabolismo , Infertilidad Femenina/metabolismo , Proteínas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda