Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Physiol Plant ; 176(1): e14213, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38353135

RESUMEN

Brassica napus is an important oil crop and cold stress severely limits its productivity. To date, several studies have reported the regulatory genes and pathways involved in cold-stress responses in B. napus. However, transcriptome-scale identification of the regulatory genes is still lacking. In this study, we performed comparative transcriptome analysis of cold-tolerant C18 (CT - C18) and cold-sensitive C6 (CS - C6) Brassica napus genotypes under cold stress for 7 days, with the primary purpose of identifying cold-responsive transcription in B. napus. A total of 6061 TFs belonging to 58 families were annotated in the B. napus genome, of which 3870 were expressed under cold stress in both genotypes. Among these, 451 TFs were differentially expressed (DE), with 21 TF genes expressed in both genotypes. Most TF members of the MYB (26), bHLH (23), and NAC (17) families were significantly expressed in the CT - C18 genotype compared with the CS - C6 B. napus genotype. GO classification showed a significant role in transcription regulation, DNA-binding transcription factor activity, response to chitin, and the ethylene-activated signaling pathway. KEGG pathway annotation revealed these TFs are involved in regulating more pathways, resulting in more tolerance. In conclusion, the results provide insights into the molecular regulation mechanisms of B. napus in response to freezing treatment, expanding our understanding of the complex molecular mechanisms in plants' response to freezing stress.


Asunto(s)
Brassica napus , Transcriptoma , Humanos , Transcriptoma/genética , Brassica napus/metabolismo , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Perfilación de la Expresión Génica/métodos , Genotipo
2.
Int J Phytoremediation ; 26(6): 913-927, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37985450

RESUMEN

Salt excretory halophytes are the major sources of phytoremediation of salt-affected soils. Cressa cretica is a widely distributed halophyte in hypersaline lands in the Cholistan Desert. Therefore, identification of key physio-anatomical traits related to phytoremediation in differently adapted C. cretica populations was focused on. Four naturally adapted ecotypes of non-succulent halophyte Cressa cretica L. form hyper-arid and saline desert Cholistan. The selected ecotypes were: Derawar Fort (DWF, ECe 20.8 dS m-1) from least saline site, Traway Wala Toba (TWT, ECe 33.2 dS m-1) and Bailah Wala Dahar (BWD, ECe 45.4 dS m-1) ecotypes were from moderately saline sites, and Pati Sir (PAS, ECe 52.4 dS m-1) was collected from the highly saline site. The natural population of this species was collected and carefully brought to the laboratory for different structural and functional traits. As a result of high salinity, Na+, Cl-, K+, and Ca2+ content significantly increased at root and shoot level. At root level, some distinctive modifications such as increased sclerification in vascular bundles, enlarged vascular bundles, metaxylem vessels, phloem region, and storage parenchyma (cortex) are pivotal for water storage under extreme arid and osmotic condition. At the stem level, enhanced sclerification in outer cortex and vascular bundles, stem cellular area, cortical proportion, metaxylem and phloem area, and at the leaf level, very prominent structural adaptations were thicker and smaller leaves with increased density of salt glands and trichomes at surface, few and large stomata, reduced cortical and mesophyll parenchyma, and narrow xylem vessels and phloem area represent their non-succulent nature. The ecotype collected from hypersaline environments was better adapted regarding growth traits, ion uptake and excretion, succulence, and phytoremediation traits. More importantly, structural and functional traits such as root length and biomass, accumulation of toxic ions along with K+ in root and shoot, accumulation of Ca2+ in shoot and Mg2+ in root, excretion of toxic ions were the highest in this ecotype. In conclusion, all these alterations strongly favor water conservation, which certainly contributes to ecotypes survival under salt-induced physiological drought.


Naturally adapted salt tolerant plants provide exceptional material for exploring adaptive mechanisms they use to confront high salt concentrations. Cressa cretica is a hypersaline hyperarid desert colonizer, which was previously underexplored. In the present study, we focused on the new insight on relationship among anatomical modifications, salt accumulation and excretion and phytoremediation potential of this rare species.


Asunto(s)
Álcalis , Suelo , Biodegradación Ambiental , Suelo/química , Solución Salina , Cloruro de Sodio , Iones , Plantas Tolerantes a la Sal/química , Plantas Tolerantes a la Sal/fisiología , Salinidad
3.
Plants (Basel) ; 13(7)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38611473

RESUMEN

Brassica napus (B. napus) is susceptible to multiple abiotic stresses that can affect plant growth and development, ultimately reducing crop yields. In the past, many genes that provide tolerance to abiotic stresses have been identified and characterized. Peroxidase (POD) proteins, members of the oxidoreductase enzyme family, play a critical role in protecting plants against abiotic stresses. This study demonstrated a comprehensive investigation of the POD gene family in B. napus. As a result, a total of 109 POD genes were identified across the 19 chromosomes and classified into five distinct subgroups. Further, 44 duplicate events were identified; of these, two gene pairs were tandem and 42 were segmental. Synteny analysis revealed that segmental duplication was more prominent than tandem duplication among POD genes. Expression pattern analysis based on the RNA-seq data of B. napus indicated that BnPOD genes were expressed differently in various tissues; most of them were expressed in roots rather than in other tissues. To validate these findings, we performed RT-qPCR analysis on ten genes; these genes showed various expression levels under abiotic stresses. Our findings not only furnish valuable insights into the evolutionary dynamics of the BnPOD gene family but also serve as a foundation for subsequent investigations into the functional roles of POD genes in B. napus.

4.
Plants (Basel) ; 13(2)2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38256756

RESUMEN

Multiple abiotic stresses such as drought, salinity, heat, and cold stress prevailing in natural habitats affect plant growth and development. Different species modify their structural and functional traits to combat these abiotic stresses while growing in stressful environments. Cenchrus species, i.e., Cenchrus pennisetiformis, C. setiger, and C. prieurii are widely distributed grasses found growing all over the world. Samples from natural populations were collected from different ecological regions in the Punjab and Khyber Pakhtoonkhwa that were exposed to aridity, salinity, and cold, while one site was designated as normal control. In the present study, structural and functional modifications of three Cenchrus species under abiotic stresses were evaluated. It was expected that each Cenchrus species may evolve different strategies to cope with multiple abiotic stresses. All Cenchrus species responded differently whether growing in normal environment or stressful conditions. The most remarkable feature for survival in C. pennisetiformis under cold stress was increased inflorescence and increased stem and root lignification. C. prieurii showed better tolerance to saline and cold environments. C. setiger showed better development of leaf sheath anatomical traits. The structural and functional modifications in Cenchrus species such as development of mechanical tissues provided structural support, while dermal and parenchymatous tissues increased water storage capacity and minimized water loss. An increase in the concentration of organic osmolytes and ionic content aids turgor pressure maintenance and ionic content crucial for plant growth and development. It was concluded that structural and functional alterations in all Cenchrus species were very specific and critical for survival under different environmental stresses. The ecological fitness of these species relied on maintenance of growth and biomass production, and the development of mechanical, vascular, dermal and parenchyma tissues under stressful environmental conditions. Moreover, accumulation of beneficial ions (K+ and Ca2+) and organic osmolytes were critical in turgor maintenance, hence survival of Cenchrus spp.

5.
Front Plant Sci ; 14: 1199210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936931

RESUMEN

Sugarcane (Saccharum spp. hybrids) is a worldwide acclaimed important agricultural crop used primarily for sugar production and biofuel. Sugarcane's genetic complexity, aneuploidy, and extreme heterozygosity make it a challenging crop in developing improved varieties. The molecular breeding programs promise to develop nutritionally improved varieties for both direct consumption and commercial application. Therefore, to address these challenges, the development of simple sequence repeats (SSRs) has been proven to be a powerful molecular tool in sugarcane. This study involved the collection of 285216 expressed sequence tags (ESTs) from sugarcane, resulting in 23666 unigenes, including 4547 contigs. Our analysis identified 4120 unigenes containing a total of 4960 SSRs, with the most abundant repeat types being monomeric (44.33%), dimeric (13.10%), and trimeric (39.68%). We further chose 173 primers to analyze the banding pattern in 10 sugarcane accessions by PAGE analysis. Additionally, functional annotation analysis showed that 71.07%, 53.6%, and 10.3% unigenes were annotated by Uniport, GO, and KEGG, respectively. GO annotations and KEGG pathways were distributed across three functional categories: molecular (46.46%), cellular (33.94%), and biological pathways (19.6%). The cluster analysis indicated the formation of four distinct clusters among selected sugarcane accessions, with maximum genetic distance observed among the varieties. We believe that these EST-SSR markers will serve as valuable references for future genetic characterization, species identification, and breeding efforts in sugarcane.

6.
Environ Sci Pollut Res Int ; 30(33): 80693-80712, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37301816

RESUMEN

Using halophytes for phytoremediation is an environmentally friendly technique, now gaining importance all over the world. Fagonia indica Burm. f. (Indian Fagonia) is primarily distributed in salt-affected lands of the Cholistan Desert and surrounding habitats. Four populations with three replications from salt-affected habitats were collected from natural habitats to evaluate structural and functional adaptation for salinity tolerance and phytoremediation of hypersaline habitats. The populations collected from the highest saline sites Pati Sir (PS) and Ladam Sir (LS) had restricted growth habit, increased accumulation of K+ and Ca2+ along Na+ and Cl-, more excretion of Na+ and Cl-, increased cross-sectional area of root and stem, larger exodermal and endodermal cells in roots, and broad metaxylem area. Sclerification in stem was high in population. Specific modifications in leaves were reduced stomatal area and increased adaxial epidermal cell area. Important traits associated with phytoremediation potential of F. indica populations (Pati Sir and Ladam Sir) were deeper roots and taller plants, increased density of salt glands on leaf surface, and high excretion of Na+. Additionally, higher bio-concentration factor, translocation factor, and dilution factor for Na and Cl- in same Ladam Sir and Pati Sir population were identified as key phytoremediation attributes. The plants of F. indica colonizing high salinities (Pati Sir and Ladam Sir) were, therefore, more efficient in phytoremediation of saline soils as these populations accumulated and/or excrete toxic salts. Density of salt glands remarkably increased in the Pati Sir population collected from the highest salinity. This population accumulated and excreted the highest amount of Na+ and Cl-. The dilution factor of Na+ and Cl- ions was also the highest in this population. Anatomical modifications such as root and stem cross-sectional areas, proportion of storage parenchyma, and broad metaxylem vessels were the maximum in Pati Sir population. These modifications indicate not only better salt tolerance of the Pati Sir population but also better in accumulation and excretion of toxic salts. This population can potentially rehabilitate hypersaline uncultivated lands through green reclamation.


Asunto(s)
Plantas Tolerantes a la Sal , Sales (Química) , Animales , Plantas Tolerantes a la Sal/metabolismo , Biodegradación Ambiental , Ecosistema , Tolerancia a la Sal , Sodio/metabolismo , Salinidad , Hojas de la Planta/metabolismo
7.
PLoS One ; 18(6): e0286736, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37285364

RESUMEN

Plant performance is mainly estimated based on plant architecture, leaf features and internal microstructural changes. Olive (Olea europaea L.) is a drought tolerant, oil yielding, and medium sized woody tree that shows specific structural and functional modifications under changing environment. This study was aimed to know the microstructural alteration involving in growth and yield responses of different Olive cultivars. Eleven cultivars were collected all over the world and were planted at Olive germplasm unit, Barani Agricultural Research Institute, Chakwal (Punjab) Pakistan, during September to November 2017. Plant material was collected to correlate morpho-anatomical traits with yield contributing characteristics. Overall, the studied morphological characters, yield and yield parameters, and root, stem and leaf anatomical features varied highly significantly in all olive cultivars. The most promising cultivar regarding yield was Erlik, in which plant height seed weight and root anatomical characteristics, i.e., epidermal thickness and phloem thickness, stem features like collenchymatous thickness, phloem thickness and metaxylem vessel diameter, and leaf traits like midrib thickness, palisade cell thickness a phloem thickness were the maximum. The second best Hamdi showed the maximum plant height, fruit length, weight and diameter and seed length and weight. It also showed maximum stem phloem thickness, midrib and lamina thicknesses, palisade cell thickness. Fruit yield in the studied olive cultivars can be more closely linked to high proportion of storage parenchyma, broader xylem vessels and phloem proportion, dermal tissue, and high proportion of collenchyma.


Asunto(s)
Olea , Olea/química , Frutas , Árboles , Fenotipo , Semillas
8.
Nutrients ; 12(8)2020 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-32784736

RESUMEN

The use of dietary supplements for weight loss has gained significant momentum. Polyglucosamine, a chitosan derivative, is a dietary supplement increasingly used for weight loss. In this meta-analysis, we systematically summarized and quantified the key findings of four randomized, placebo-controlled clinical trials examining the effects of polyglucosamine supplementation and caloric restriction, and physical activity on body weight, body mass index (BMI), and waist circumference in subjects with overweight and obesity. The control group was set with a physical activity from 6-7 MET-h/week activity and up to 21 MET-h/week activity with caloric restriction. Compliance in the latter trials was reported via a follow-up questionnaire with the individual participants. The analysis included 399 subjects followed for a period ranging from 12 weeks to one year. Subjects' age ranged from 21-75 years, BMI from 26-45 kg/m2, and all were white European or Caucasian in ethnicity. The meta-analyzed mean differences for random effects showed that polyglucosamine supplementation improves weight loss by -1.78 kg [-2.78, -0.79], BMI by -1.52 kg/m2 [-3.58, 0.54], and improves waist circumference reduction by -1.45 cm [-2.77, -0.12]. In conclusion, the use of polyglucosamine supplementation in conjunction with lifestyle behavioral therapies can be effective for weight reduction. Further studies are needed to examine the long-term effects of polyglucosamine supplementation on weight loss and other metabolic parameters.


Asunto(s)
Fármacos Antiobesidad/administración & dosificación , Suplementos Dietéticos , Glucosamina/administración & dosificación , Obesidad/terapia , Sobrepeso/terapia , Adulto , Anciano , Índice de Masa Corporal , Restricción Calórica/métodos , Ejercicio Físico/fisiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/fisiopatología , Sobrepeso/fisiopatología , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Pérdida de Peso/efectos de los fármacos , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda