Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Plant Mol Biol ; 110(1-2): 131-145, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35729482

RESUMEN

KEY MESSAGE: Ethanol priming induces heat stress tolerance by the stimulation of unfolded protein response. Global warming increases the risk of heat stress-related yield losses in agricultural crops. Chemical priming, using safe agents, that can flexibly activate adaptive regulatory responses to adverse conditions, is a complementary approach to genetic improvement for stress adaptation. In the present study, we demonstrated that pretreatment of Arabidopsis with a low concentration of ethanol enhances heat tolerance without suppressing plant growth. We also demonstrated that ethanol pretreatment improved leaf growth in lettuce (Lactuca sativa L.) plants grown in the field conditions under high temperatures. Transcriptome analysis revealed a set of genes that were up-regulated in ethanol-pretreated plants, relative to water-pretreated controls. Binding Protein 3 (BIP3), an endoplasmic reticulum (ER)-stress marker chaperone gene, was among the identified up-regulated genes. The expression levels of BIP3 were confirmed by RT-qPCR. Root-uptake of ethanol was metabolized to organic acids, nucleic acids, amines and other molecules, followed by an increase in putrescine content, which substantially promoted unfolded protein response (UPR) signaling and high-temperature acclimation. We also showed that inhibition of polyamine production and UPR signaling negated the heat stress tolerance induced by ethanol pretreatment. These findings collectively indicate that ethanol priming activates UPR signaling via putrescine accumulation, leading to enhanced heat stress tolerance. The information gained from this study will be useful for establishing ethanol-mediated chemical priming strategies that can be used to help maintain crop production under heat stress conditions.


Asunto(s)
Arabidopsis , Termotolerancia , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Etanol/farmacología , Putrescina/metabolismo , Respuesta de Proteína Desplegada
2.
Plant Mol Biol ; 110(3): 269-285, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35969295

RESUMEN

External application of ethanol enhances tolerance to high salinity, drought, and heat stress in various plant species. However, the effects of ethanol application on increased drought tolerance in woody plants, such as the tropical crop "cassava," remain unknown. In the present study, we analyzed the morphological, physiological, and molecular responses of cassava plants subjected to ethanol pretreatment and subsequent drought stress treatment. Ethanol pretreatment induced a slight accumulation of abscisic acid (ABA) and stomatal closure, resulting in a reduced transpiration rate, higher water content in the leaves during drought stress treatment and the starch accumulation in leaves. Transcriptomic analysis revealed that ethanol pretreatment upregulated the expression of ABA signaling-related genes, such as PP2Cs and AITRs, and stress response and protein-folding-related genes, such as heat shock proteins (HSPs). In addition, the upregulation of drought-inducible genes during drought treatment was delayed in ethanol-pretreated plants compared with that in water-pretreated control plants. These results suggest that ethanol pretreatment induces stomatal closure through activation of the ABA signaling pathway, protein folding-related response by activating the HSP/chaperone network and the changes in sugar and starch metabolism, resulting in increased drought avoidance in plants.


Asunto(s)
Manihot , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Sequías , Etanol/farmacología , Regulación de la Expresión Génica de las Plantas , Proteínas de Choque Térmico/genética , Manihot/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Estrés Fisiológico/genética , Azúcares/metabolismo , Agua/metabolismo
3.
Plant Cell Physiol ; 63(9): 1181-1192, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36003026

RESUMEN

Water scarcity is a serious agricultural problem causing significant losses to crop yield and product quality. The development of technologies to mitigate the damage caused by drought stress is essential for ensuring a sustainable food supply for the increasing global population. We herein report that the exogenous application of ethanol, an inexpensive and environmentally friendly chemical, significantly enhances drought tolerance in Arabidopsis thaliana, rice and wheat. The transcriptomic analyses of ethanol-treated plants revealed the upregulation of genes related to sucrose and starch metabolism, phenylpropanoids and glucosinolate biosynthesis, while metabolomic analysis showed an increased accumulation of sugars, glucosinolates and drought-tolerance-related amino acids. The phenotyping analysis indicated that drought-induced water loss was delayed in the ethanol-treated plants. Furthermore, ethanol treatment induced stomatal closure, resulting in decreased transpiration rate and increased leaf water contents under drought stress conditions. The ethanol treatment did not enhance drought tolerance in the mutant of ABI1, a negative regulator of abscisic acid (ABA) signaling in Arabidopsis, indicating that ABA signaling contributes to ethanol-mediated drought tolerance. The nuclear magnetic resonance analysis using 13C-labeled ethanol indicated that gluconeogenesis is involved in the accumulation of sugars. The ethanol treatment did not enhance the drought tolerance in the aldehyde dehydrogenase (aldh) triple mutant (aldh2b4/aldh2b7/aldh2c4). These results show that ABA signaling and acetic acid biosynthesis are involved in ethanol-mediated drought tolerance and that chemical priming through ethanol application regulates sugar accumulation and gluconeogenesis, leading to enhanced drought tolerance and sustained plant growth. These findings highlight a new survival strategy for increasing crop production under water-limited conditions.


Asunto(s)
Arabidopsis , Sequías , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Etanol/metabolismo , Regulación de la Expresión Génica de las Plantas , Estomas de Plantas/fisiología , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico/genética , Azúcares/metabolismo , Agua/metabolismo
4.
Plant Mol Biol ; 107(1-2): 63-84, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34460049

RESUMEN

KEY MESSAGE: Overexpressing Nicotinamidase 3 gene, and the exogenous application of its metabolite nicotinic acid (NA), enhance drought stress tolerance and increase biomass in Arabidopsis thaliana. With progressive global climatic changes, plant productivity is threatened severely by drought stress. Deciphering the molecular mechanisms regarding genes responsible for balancing plant growth and stress amelioration could imply multiple possibilities for future sustainable goals. Nicotinamide adenine dinucleotide (NAD) biosynthesis and recycling/ distribution is a crucial feature for plant growth. The current study focuses on the functional characterization of nicotinamidase 3 (NIC3) gene, which is involved in the biochemical conversion of nicotinamide (NAM) to nicotinic acid (NA) in the salvage pathway of NAD biosynthesis. Our data show that overexpression of NIC3 gene enhances drought stress tolerance and increases plant growth. NIC3-OX plants accumulated more NA as compared to WT plants. Moreover, the upregulation of several genes related to plant growth/stress tolerance indicates that regulating the NAD salvage pathway could significantly enhance plant growth and drought stress tolerance. The exogenous application of nicotinic acid (NA) showed a similar phenotype as the effect of overexpressing NIC3 gene. In short, we contemplated the role of NIC3 gene and NA application in drought stress tolerance and plant growth. Our results would be helpful in engineering plants with enhanced drought stress tolerance and increased growth potential.


Asunto(s)
Adaptación Fisiológica/genética , Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Sequías , Regulación de la Expresión Génica de las Plantas , Niacina/fisiología , Nicotinamidasa/genética , Adaptación Fisiológica/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Modelos Biológicos , NAD/metabolismo , NADP/metabolismo , Niacina/farmacología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Plantas Modificadas Genéticamente , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Transcriptoma/genética , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
5.
N Engl J Med ; 379(9): 846-855, 2018 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-30157388

RESUMEN

BACKGROUND: There are limited treatments for progressive multiple sclerosis. Ibudilast inhibits several cyclic nucleotide phosphodiesterases, macrophage migration inhibitory factor, and toll-like receptor 4 and can cross the blood-brain barrier, with potential salutary effects in progressive multiple sclerosis. METHODS: We enrolled patients with primary or secondary progressive multiple sclerosis in a phase 2 randomized trial of oral ibudilast (≤100 mg daily) or placebo for 96 weeks. The primary efficacy end point was the rate of brain atrophy, as measured by the brain parenchymal fraction (brain size relative to the volume of the outer surface contour of the brain). Major secondary end points included the change in the pyramidal tracts on diffusion tensor imaging, the magnetization transfer ratio in normal-appearing brain tissue, the thickness of the retinal nerve-fiber layer, and cortical atrophy, all measures of tissue damage in multiple sclerosis. RESULTS: Of 255 patients who underwent randomization, 129 were assigned to ibudilast and 126 to placebo. A total of 53% of the patients in the ibudilast group and 52% of those in the placebo group had primary progressive disease; the others had secondary progressive disease. The rate of change in the brain parenchymal fraction was -0.0010 per year with ibudilast and -0.0019 per year with placebo (difference, 0.0009; 95% confidence interval, 0.00004 to 0.0017; P=0.04), which represents approximately 2.5 ml less brain-tissue loss with ibudilast over a period of 96 weeks. Adverse events with ibudilast included gastrointestinal symptoms, headache, and depression. CONCLUSIONS: In a phase 2 trial involving patients with progressive multiple sclerosis, ibudilast was associated with slower progression of brain atrophy than placebo but was associated with higher rates of gastrointestinal side effects, headache, and depression. (Funded by the National Institute of Neurological Disorders and Stroke and others; NN102/SPRINT-MS ClinicalTrials.gov number, NCT01982942 .).


Asunto(s)
Encéfalo/patología , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Inhibidores de Fosfodiesterasa/uso terapéutico , Piridinas/uso terapéutico , Adulto , Atrofia/prevención & control , Encéfalo/diagnóstico por imagen , Depresión/inducido químicamente , Imagen de Difusión Tensora , Progresión de la Enfermedad , Método Doble Ciego , Femenino , Enfermedades Gastrointestinales/inducido químicamente , Cefalea/inducido químicamente , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/patología , Inhibidores de Fosfodiesterasa/efectos adversos , Piridinas/efectos adversos
6.
J Exp Bot ; 72(6): 2083-2098, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33502492

RESUMEN

Improvement of crop production in response to rapidly changing environmental conditions is a serious challenge facing plant breeders and biotechnologists. Iron (Fe), zinc (Zn), manganese (Mn), and copper (Cu) are essential micronutrients for plant growth and reproduction. These minerals are critical to several cellular processes including metabolism, photosynthesis, and cellular respiration. Regulating the uptake and distribution of these minerals could significantly improve plant growth and development, ultimately leading to increased crop production. Plant growth is limited by mineral deficiency, but on the other hand, excess Fe, Mn, Cu, and Zn can be toxic to plants; therefore, their uptake and distribution must be strictly regulated. Moreover, the distribution of these metals among subcellular organelles is extremely important for maintaining optimal cellular metabolism. Understanding the mechanisms controlling subcellular metal distribution and availability would enable development of crop plants that are better adapted to challenging and rapidly changing environmental conditions. Here, we describe advances in understanding of subcellular metal homeostasis, with a particular emphasis on cellular Fe homeostasis in Arabidopsis and rice, and discuss strategies for regulating cellular metabolism to improve plant production.


Asunto(s)
Cobre , Zinc , Homeostasis , Hierro , Manganeso
7.
Biosci Biotechnol Biochem ; 86(1): 12-22, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34661659

RESUMEN

Iron (Fe) is an essential mineral for plants, and its deficiency as well as toxicity severely affects plant growth and development. Although Fe is ubiquitous in mineral soils, its acquisition by plants is difficult to regulate particularly in acidic and alkaline soils. Under alkaline conditions, where lime is abundant, Fe and other mineral elements are sparingly soluble. In contrast, under low pH conditions, especially in paddy fields, Fe toxicity could occur. Fe uptake is complicated and could be integrated with copper (Cu), manganese (Mn), zinc (Zn), and cadmium (Cd) uptake. Plants have developed sophisticated mechanisms to regulate the Fe uptake from soil and its transport to root and above-ground parts. Here, we review recent developments in understanding metal transport and discuss strategies to effectively regulate metal transport in plants with a particular focus on rice.


Asunto(s)
Cadmio
8.
Plant Mol Biol ; 104(1-2): 97-112, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32643113

RESUMEN

KEY MESSAGE: By integrating genetics and genomics data, reproductive tissues-specific and heat stress responsive 35 meta-QTLs and 45 candidate genes were identified, which could be exploited through marker-assisted breeding for fast-track development of heat-tolerant rice cultivars. Rice holds the key to future food security. In rice-growing areas, temperature has already reached an optimum level for growth, hence, any further increase due to global climate change could significantly reduce rice yield. Several mapping studies have identified a plethora of reproductive tissue-specific and heat stress associated inconsistent quantitative trait loci (QTL), which could be exploited for improvement of heat tolerance. In this study, we performed a meta-analysis on previously reported QTLs and identified 35 most consistent meta-QTLs (MQTLs) across diverse genetic backgrounds and environments. Genetic and physical intervals of nearly 66% MQTLs were narrower than 5 cM and 2 Mb respectively, indicating hotspot genomic regions for heat tolerance. Comparative analyses of MQTLs underlying genes with microarray and RNA-seq based transcriptomic data sets revealed a core set of 45 heat-responsive genes, among which 24 were reproductive tissue-specific and have not been studied in detail before. Remarkably, all these genes corresponded to various stress associated functions, ranging from abiotic stress sensing to regulating plant stress responses, and included heat-shock genes (OsBiP2, OsMed37_1), transcription factors (OsNAS3, OsTEF1, OsWRKY10, OsWRKY21), transmembrane transporters (OsAAP7A, OsAMT2;1), sugar metabolizing (OsSUS4, α-Gal III) and abiotic stress (OsRCI2-7, SRWD1) genes. Functional data evidences from Arabidopsis heat-shock genes also suggest that OsBIP2 may be associated with thermotolerance of pollen tubes under heat stress conditions. Furthermore, promoters of identified genes were enriched with heat, dehydration, pollen and sugar responsive cis-acting regulatory elements, proposing a common regulatory mechanism might exist in rice for mitigating reproductive stage heat stress. These findings strongly support our results and provide new candidate genes for fast-track development of heat-tolerant rice cultivars.


Asunto(s)
Respuesta al Choque Térmico/genética , Oryza/genética , Oryza/metabolismo , Sitios de Carácter Cuantitativo/genética , Sitios de Carácter Cuantitativo/fisiología , Bases de Datos Genéticas , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/genética , Genómica , Calor , Oryza/crecimiento & desarrollo , Fenotipo , Desarrollo de la Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas , Reproducción , Estrés Fisiológico/genética , Termotolerancia
9.
Arch Phys Med Rehabil ; 99(2): 299-305, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28899827

RESUMEN

OBJECTIVE: To examine the safety and efficacy of using a clitoral vacuum suction device (CVSD) versus vibratory stimulation (V) to treat orgasmic dysfunction in women with multiple sclerosis (MS) or spinal cord injury (SCI). DESIGN: Randomized clinical trial. SETTING: Two academic medical centers. PARTICIPANTS: Women (N=31) including 20 with MS and 11 with SCI. INTERVENTION: A 12-week trial of the use of a CVSD versus V. MAIN OUTCOME MEASURES: Female Sexual Function Inventory (FSFI) and Female Sexual Distress Scale (FSDS). RESULTS: Twenty-three women (18 MS, 5 SCI) completed the study including 13 of 16 randomized to CVSD and 10 of 15 randomized to V. There was a statistically significant increase in total FSFI score (P=.011), desire (P=.009), arousal (P=.009), lubrication (P=.008), orgasm (P=.012), and satisfaction (P=.049), and a significant decrease in distress as measured by FSDS (P=.020) in subjects using the CVSD. In subjects who used V, there was a statistically significant increase in the orgasm subscale of the FSFI (P=.028). Subjects using the CVSD maintained improvements 4 weeks after treatment. CONCLUSIONS: CVSD is safe and overall efficacious to treat female neurogenic sexual dysfunction related to MS and SCI. V is also safe and efficacious for female neurogenic orgasmic dysfunction; however, results were limited to the active treatment period. Because of ease of access and cost, clinicians can consider use of V for women with MS or SCI with orgasmic dysfunction. CVSD is recommended for women with multiple sexual dysfunctions or for whom V is ineffective.


Asunto(s)
Clítoris , Esclerosis Múltiple/fisiopatología , Orgasmo , Disfunciones Sexuales Fisiológicas/fisiopatología , Disfunciones Sexuales Fisiológicas/rehabilitación , Traumatismos de la Médula Espinal/fisiopatología , Succión/instrumentación , Vacio , Adulto , Femenino , Humanos , Persona de Mediana Edad , Calidad de Vida , Encuestas y Cuestionarios , Resultado del Tratamiento
10.
J Exp Bot ; 68(7): 1785-1795, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28369596

RESUMEN

Rice (Oryza sativa) secretes 2'-deoxymugineic acid (DMA) to acquire insoluble iron (Fe) from the rhizosphere. In rice, DMA is synthesized by DMA synthase 1 (OsDMAS1), a member of the aldo-keto reductase super family. We screened OsDMAS1 paralogs for DMA synthesis. None of these paralogs displayed in vitro DMA synthesis activity, suggesting that rice only harbors one functional DMAS. We further characterized OsDMAS1 mutant plants. We failed to screen homozygous knock-out plants (dmas-1), so we characterized DMAS knock-down plants (dmas-kd1 and dmas-kd2). Under Fe-deficient conditions, dmas-kd1 plants were more chlorotic compared to the wild-type (WT) plants, and the expression of OsNAS3, OsYSL2, OsIRT1, and OsIRO2 was significantly up-regulated in the dmas-kd1 mutant, indicating that metal homeostasis was significantly disturbed. The secretion of DMA in dmas-kd1 was not significantly reduced. The dmas-kd1 plants accumulated less Fe in their roots compared to WT plants when grown with 10 µM FeSO4. The dmas-kd1 plants accumulated more Zn in their roots compared to WT plants under Fe-deficient, Fe-EDTA, and FeSO4 conditions. In both dehusked rice seeds (brown rice) and polished rice, no differences were observed for Fe, Cu, or Mn accumulation, whereas dmas-kd1 seeds significantly accumulated more Zn in brown rice. Our data suggests that rice only harbors one functional gene for DMA synthesis. In addition, the knock-down of OsDMAS1 significantly up-regulates the genes involved in Fe uptake and homeostasis.


Asunto(s)
Ácido Azetidinocarboxílico/análogos & derivados , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Oryza/fisiología , Proteínas de Plantas/genética , Ácido Azetidinocarboxílico/metabolismo , Transporte Biológico , Homeostasis , Oryza/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda