RESUMEN
This study applied peptidomics to investigate potential biomarkers for evaluating pork-meat freshness. The spoilage time points of pork meat stored at -2, 4, 10, and 25 °C were defined by evaluating meat freshness indicators (color, total viable count, pH, and total volatile basic nitrogen). Peptide MVHMASKE was identified as a potential peptide marker via multivariate analysis. Pearson correlation revealed a negative correlation between intensity of MVHMASKE and total viable count/total volatile basic nitrogen. In addition, the correlation between peptide content and the change in pork-meat freshness was verified using real-life samples, and the content of MVHMASKE showed a significant decline during storage under 4 and 25 °C, correspondingly reflecting the change of pork meat from fresh to spoiled. This study provides favorable evidence to evaluate pork-meat freshness by monitoring the change of peptide MVHMASKE in content based on mass spectrometry-based peptidomics.
RESUMEN
Modified atmosphere packaging (MAP) is widely applied in packaging meat and meat products. While most studies had employed culture-dependent microbiological analyses or polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), the recent application of high-throughput sequencing (HTS) has been effective and reliable in detecting the microbial consortium associated with food spoilage. Since MAP application is limited in China, applying HTS in assessing the microbial consortium of meat and meat products in the country becomes imperative. In this study, quality indexes and bacterial enumeration often used as spoilage indicators were employed to assess MAP fresh pork under chilled (4 °C) storage for 21 d. The results indicated that 70%O2/30%CO2 (Group A) retained more redness (a*) content, while 70%N2/30%CO2 (Group B) markedly reduced spoilage indicators compared to the control group. Notably, high-throughput sequencing indicated that Group B and 20%O2/60%N2/20%CO2 (Group C) inhibited the growth of abundant spoilers, Pseudomonas spp. and Brochothrix spp. Thus, MAP (Group B and C) has promising potential in inhibiting predominant meat spoilers during chilled storage. This study provides valuable information to food industries on the potential application of MAP to control meat spoilage in Chinese markets.