Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190368, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32862819

RESUMEN

Two mooring arrays carrying sediment traps were deployed from September 2011 to August 2012 at ∼83°N on each side of the Gakkel Ridge in the Nansen and Amundsen Basins to measure downward particle flux below the euphotic zone (approx. 250 m) and approximately 150 m above seafloor at approximately 3500 and 4000 m depth, respectively. In a region that still experiences nearly complete ice cover throughout the year, export fluxes of total particulate matter (TPM), particulate organic carbon (POC), particulate nitrogen (PN), biogenic matter, lithogenic matter, biogenic particulate silica (bPSi), calcium carbonate (CaCO3), protists and biomarkers only slightly decreased with depth. Seasonal variations of particulate matter fluxes were similar on both sides of the Gakkel Ridge. Somewhat higher export rates in the Amundsen Basin and differences in the composition of the sinking TPM and bPSi on each side of the Gakkel Ridge probably reflected the influence of the Lena River/Transpolar Drift in the Amundsen Basin and the influence of Atlantic water in the Nansen Basin. Low variations in particle export with depth revealed a limited influence of lateral advection in the deep barren Eurasian Basin. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Asunto(s)
Ecosistema , Sedimentos Geológicos/química , Cubierta de Hielo/química , Organismos Acuáticos/metabolismo , Regiones Árticas , Biodiversidad , Ciclo del Carbono , Océanos y Mares , Compuestos Orgánicos/análisis , Material Particulado/análisis , Estaciones del Año , Agua de Mar/química
2.
Environ Sci Technol ; 52(11): 6208-6216, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29787253

RESUMEN

Organophosphate esters (OPEs) have been found in remote environments at unexpectedly high concentrations, but very few measurements of OPE concentrations in seawater are available, and none are available in subsurface seawater. In this study, passive polyethylene samplers (PEs) deployed on deep-water moorings in the Fram Strait and in surface waters of Canadian Arctic lakes and coastal sites were analyzed for a suite of common OPEs. Total OPEs ( ∑11OPE) at deep-water sites were dominated by chlorinated OPEs, and ranged from 6.3 to 440 pg/L. Concentrations were similar in eastern and western Fram Strait. Chlorinated OPEs were also dominant in Canadian Arctic surface waters (mean concentration ranged from < DL to 4400 pg/L), while nonhalogenated alkyl/aryl-substituted OPEs remained low (1.3-55 pg/L), possibly due to the greater long-range transport potential of chlorinated OPEs. Polybrominated diphenyl ethers (PBDEs) were found at much lower concentrations than OPEs (

Asunto(s)
Retardadores de Llama , Éteres Difenilos Halogenados , Regiones Árticas , Canadá , Monitoreo del Ambiente , Ésteres , Organofosfatos
3.
Environ Sci Technol ; 50(12): 6172-9, 2016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27174500

RESUMEN

Little is known of the distribution of persistent organic pollutants (POPs) in the deep ocean. Polyethylene passive samplers were used to detect the vertical distribution of truly dissolved POPs at two sites in the Atlantic Ocean. Samplers were deployed at five depths covering 26-2535 m in the northern Atlantic and Tropical Atlantic, in approximately one year deployments. Samplers of different thickness were used to determine the state of equilibrium POPs reached in the passive samplers. Concentrations of POPs detected in the North Atlantic near the surface (e.g., sum of 14 polychlorinated biphenyls, PCBs: 0.84 pg L(-1)) were similar to previous measurements. At both sites, PCB concentrations showed subsurface maxima (tropical Atlantic Ocean -800 m, North Atlantic -500 m). Currents seemed more important in moving POPs to deeper water masses than the biological pump. The ratio of PCB concentrations in near surface waters (excluding PCB-28) between the two sites was inversely correlated with congeners' subcooled liquid vapor pressure, in support of the latitudinal fractionation. The results presented here implied a significant amount of HCB is stored in the Atlantic Ocean (4.8-26% of the global HCB environmental burdens), contrasting traditional beliefs that POPs do not reach the deep ocean.


Asunto(s)
Monitoreo del Ambiente , Contaminantes Químicos del Agua , Océano Atlántico , Bifenilos Policlorados , Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda