Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
PLoS Pathog ; 16(8): e1008697, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32776976

RESUMEN

The diamondback moth, Plutella xylostella, is a cosmopolitan pest and the first species to develop field resistance to toxins from the gram-positive bacterium Bacillus thuringiensis (Bt). Although previous work has suggested that mutations of ATP-binding cassette transporter subfamily C2 (ABCC2) or C3 (ABCC3) genes can confer Cry1Ac resistance, here we reveal that P. xylostella requires combined mutations in both PxABCC2 and PxABCC3 to achieve high-level Cry1Ac resistance, rather than simply a mutation of either gene. We identified natural mutations of PxABCC2 and PxABCC3 that concurrently occurred in a Cry1Ac-resistant strain (Cry1S1000) of P. xylostella, with a mutation (RA2) causing the mis-splicing of PxABCC2 and another mutation (RA3) leading to the premature termination of PxABCC3. Genetic linkage analysis showed that RA2 and RA3 were tightly linked to Cry1Ac resistance. Introgression of RA2 and RA3 enabled a susceptible strain (G88) of P. xylostella to obtain high resistance to Cry1Ac, confirming that these genes confer resistance. To further support the role of PxABCC2 and PxABCC3 in Cry1Ac resistance, frameshift mutations were introduced into PxABCC2 and PxABCC3 singly and in combination in the G88 strain with CRISPR/Cas9 mediated mutagenesis. Bioassays of CRISPR-based mutant strains, plus genetic complementation tests, demonstrated that the deletion of PxABCC2 or PxABCC3 alone provided < 4-fold tolerance to Cry1Ac, while disruption of both genes together conferred >8,000-fold resistance to Cry1Ac, suggesting the redundant/complementary roles of PxABCC2 and PxABCC3. This work advances our understanding of Bt resistance in P. xylostella by demonstrating mutations within both PxABCC2 and PxABCC3 genes are required for high-level Cry1Ac resistance.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/farmacología , Endotoxinas/farmacología , Proteínas Hemolisinas/farmacología , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas , Insecticidas/farmacología , Mariposas Nocturnas/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Secuencia de Aminoácidos , Animales , Bacillus thuringiensis , Toxinas de Bacillus thuringiensis , Proteínas de Insectos/química , Proteínas de Insectos/genética , Mariposas Nocturnas/química , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Mutación , Alineación de Secuencia
2.
Mol Biol Evol ; 36(5): 930-941, 2019 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-30715408

RESUMEN

Antagonistic chemical interactions between herbivorous insects and their host plants are often thought to coevolve in a stepwise process, with an evolutionary innovation on one side being countered by a corresponding advance on the other. Glucosinolate sulfatase (GSS) enzyme activity is essential for the Diamondback moth, Plutella xylostella, to overcome a highly diversified secondary metabolite-based host defense system in the Brassicales. GSS genes are located in an ancient cluster of arylsulfataselike genes, but the exact roles of gene copies and their evolutionary trajectories are unknown. Here, we combine a functional investigation of duplicated insect arylsulfatases with an analysis of associated nucleotide substitution patterns. We show that the Diamondback moth genome encodes three GSSs with distinct substrate spectra and distinct expression patterns in response to glucosinolates. Contrary to our expectations, early functional diversification of gene copies was not indicative of a coevolutionary arms race between host and herbivore. Instead, both copies of a duplicated arylsulfatase gene evolved concertedly in the context of an insect host shift to acquire novel detoxifying functions under positive selection, a pattern of duplicate gene retention that we call "concerted neofunctionalization."


Asunto(s)
Adaptación Biológica/genética , Coevolución Biológica , Herbivoria , Mariposas Nocturnas/genética , Sulfatasas/genética , Animales , Femenino , Duplicación de Gen , Genoma de los Insectos , Glucosinolatos/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Sulfatasas/metabolismo
3.
BMC Genet ; 21(Suppl 2): 127, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33339510

RESUMEN

BACKGROUND: Pest eradication using the Sterile Insect Technique (SIT) involves high-density releases of sterilized males that mate with wild females and ultimately suppress the population. Sterilized females are not required for SIT and their removal or separation from males prior to release remains challenging. In order to develop genetic sexing strains (GSS), conditional traits such as temperature sensitive lethality are required. RESULTS: Here we introduce a known Drosophila melanogaster temperature sensitive embryonic lethal mutation into Bactrocera tryoni, a serious horticultural pest in Australia. A non-synonymous point mutation in the D. melanogaster gene shibire causes embryonic lethality at 29 °C and we successfully used CRISPR/Cas9 technology to recreate the orthologous shibire temperature sensitive-1 (shits1) mutation in B. tryoni. Genotypic analyses over three generations revealed that a high fitness cost was associated with the shits1 mutant allele and shits1 homozygotes were not viable at 21 °C, which is a more severe phenotype than that documented in D. melanogaster. CONCLUSIONS: We have demonstrated the first successful use of CRISPR/Cas9 to introduce precise single base substitutions in an endogenous gene via homology-directed repair in an agricultural pest insect and this technology can be used to trial other conditional mutations for the ultimate aim of generating genetic sexing strains for SIT.


Asunto(s)
Sistemas CRISPR-Cas , Mutación Puntual , Mutaciones Letales Sintéticas , Tephritidae/genética , Alelos , Secuencia de Aminoácidos , Animales , Australia , Aptitud Genética , Genotipo , Control de Insectos , Fenotipo , Alineación de Secuencia , Temperatura
4.
Insect Mol Biol ; 28(6): 873-886, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31150140

RESUMEN

Bactrocera tryoni (Queensland fruit fly) are polyphagous horticultural pests of eastern Australia. Heterogametic males contain a sex-determining Y-chromosome thought to be gene poor and repetitive. Here, we report 39 Y-chromosome scaffolds (~700 kb) from B. tryoni identified using genotype-by-sequencing data and whole-genome resequencing. Male diagnostic PCR assays validated eight Y-scaffolds, and one (Btry4096) contained a novel gene with five exons that encode a predicted 575 amino acid protein. The Y-gene, referred to as typo-gyf, is a truncated Y-chromosome paralogue of X-chromosome gene gyf (1773 aa). The Y-chromosome contained ~41 copies of typo-gyf, and expression occurred in male flies and embryos. Analysis of 13 tephritid transcriptomes confirmed typo-gyf expression in six additional Bactrocera species, including Bactrocera latifrons, Bactrocera dorsalis and Bactrocera zonata. Molecular dating estimated typo-gyf evolved within the past 8.02 million years (95% highest posterior density 10.56-5.52 million years), after the split with Bactrocera oleae. Phylogenetic analysis also highlighted complex evolutionary histories among several Bactrocera species, as discordant nuclear (116 genes) and mitochondrial (13 genes) topologies were observed. B. tryoni Y-sequences may provide useful sites for future transgene insertions, and typo-gyf could act as a Y-chromosome diagnostic marker for many Bactrocera species, although its function is unknown.


Asunto(s)
Cromosomas de Insectos/genética , Proteínas de Insectos/genética , Tephritidae/genética , Secuencia de Aminoácidos , Animales , Femenino , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Masculino , Filogenia , Alineación de Secuencia
5.
PLoS Biol ; 14(1): e1002353, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26771987

RESUMEN

An important goal in evolutionary biology is to understand the genetic changes underlying novel morphological structures. We investigated the origins of a complex wing pattern found among Amazonian Heliconius butterflies. Genome sequence data from 142 individuals across 17 species identified narrow regions associated with two distinct red colour pattern elements, dennis and ray. We hypothesise that these modules in non-coding sequence represent distinct cis-regulatory loci that control expression of the transcription factor optix, which in turn controls red pattern variation across Heliconius. Phylogenetic analysis of the two elements demonstrated that they have distinct evolutionary histories and that novel adaptive morphological variation was created by shuffling these cis-regulatory modules through recombination between divergent lineages. In addition, recombination of modules into different combinations within species further contributes to diversity. Analysis of the timing of diversification in these two regions supports the hypothesis of introgression moving regulatory modules between species, rather than shared ancestral variation. The dennis phenotype introgressed into Heliconius melpomene at about the same time that ray originated in this group, while ray introgressed back into H. elevatus much more recently. We show that shuffling of existing enhancer elements both within and between species provides a mechanism for rapid diversification and generation of novel morphological combinations during adaptive radiation.


Asunto(s)
Evolución Biológica , Mariposas Diurnas/genética , Regulación de la Expresión Génica , Pigmentación/genética , Animales , Fenotipo , Alas de Animales
6.
BMC Evol Biol ; 18(1): 77, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29843598

RESUMEN

BACKGROUND: Understanding genomic and phenotypic diversity among cryptic pest taxa has important implications for the management of pests and diseases. The diamondback moth, Plutella xylostella L., has been intensively studied due to its ability to evolve insecticide resistance and status as the world's most destructive pest of brassicaceous crops. The surprise discovery of a cryptic species endemic to Australia, Plutella australiana Landry & Hebert, raised questions regarding the distribution, ecological traits and pest status of the two species, the capacity for gene flow and whether specific management was required. Here, we collected Plutella from wild and cultivated brassicaceous plants from 75 locations throughout Australia and screened 1447 individuals to identify mtDNA lineages and Wolbachia infections. We genotyped genome-wide SNP markers using RADseq in coexisting populations of each species. In addition, we assessed reproductive compatibility in crossing experiments and insecticide susceptibility phenotypes using bioassays. RESULTS: The two Plutella species coexisted on wild brassicas and canola crops, but only 10% of Plutella individuals were P. australiana. This species was not found on commercial Brassica vegetable crops, which are routinely sprayed with insecticides. Bioassays found that P. australiana was 19-306 fold more susceptible to four commonly-used insecticides than P. xylostella. Laboratory crosses revealed that reproductive isolation was incomplete but directionally asymmetric between the species. However, genome-wide nuclear SNPs revealed striking differences in genetic diversity and strong population structure between coexisting wild populations of each species. Nuclear diversity was 1.5-fold higher in P. australiana, yet both species showed limited variation in mtDNA. Infection with a single Wolbachia subgroup B strain was fixed in P. australiana, suggesting that a selective sweep contributed to low mtDNA diversity, while a subgroup A strain infected just 1.5% of P. xylostella. CONCLUSIONS: Despite sympatric distributions and the capacity to hybridize, strong genomic and phenotypic divergence exists between these Plutella species that is consistent with contrasting colonization histories and reproductive isolation after secondary contact. Although P. australiana is a potential pest of brassicaceous crops, it is of secondary importance to P. xylostella.


Asunto(s)
Variación Genética , Hibridación Genética , Mariposas Nocturnas/genética , Animales , Australia , Bioensayo , Cruzamientos Genéticos , ADN Mitocondrial/genética , Femenino , Fertilidad , Genética de Población , Geografía , Haplotipos/genética , Heterocigoto , Hibridación Genética/efectos de los fármacos , Resistencia a los Insecticidas/efectos de los fármacos , Resistencia a los Insecticidas/genética , Insecticidas/toxicidad , Funciones de Verosimilitud , Masculino , Mitocondrias/genética , Mariposas Nocturnas/microbiología , Filogenia , Especificidad de la Especie , Simpatría , Wolbachia/efectos de los fármacos , Wolbachia/fisiología
7.
PLoS Genet ; 11(4): e1005124, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25875245

RESUMEN

Insecticidal crystal toxins derived from the soil bacterium Bacillus thuringiensis (Bt) are widely used as biopesticide sprays or expressed in transgenic crops to control insect pests. However, large-scale use of Bt has led to field-evolved resistance in several lepidopteran pests. Resistance to Bt Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.), was previously mapped to a multigenic resistance locus (BtR-1). Here, we assembled the 3.15 Mb BtR-1 locus and found high-level resistance to Cry1Ac and Bt biopesticide in four independent P. xylostella strains were all associated with differential expression of a midgut membrane-bound alkaline phosphatase (ALP) outside this locus and a suite of ATP-binding cassette transporter subfamily C (ABCC) genes inside this locus. The interplay between these resistance genes is controlled by a previously uncharacterized trans-regulatory mechanism via the mitogen-activated protein kinase (MAPK) signaling pathway. Molecular, biochemical, and functional analyses have established ALP as a functional Cry1Ac receptor. Phenotypic association experiments revealed that the recessive Cry1Ac resistance was tightly linked to down-regulation of ALP, ABCC2 and ABCC3, whereas it was not linked to up-regulation of ABCC1. Silencing of ABCC2 and ABCC3 in susceptible larvae reduced their susceptibility to Cry1Ac but did not affect the expression of ALP, whereas suppression of MAP4K4, a constitutively transcriptionally-activated MAPK upstream gene within the BtR-1 locus, led to a transient recovery of gene expression thereby restoring the susceptibility in resistant larvae. These results highlight a crucial role for ALP and ABCC genes in field-evolved resistance to Cry1Ac and reveal a novel trans-regulatory signaling mechanism responsible for modulating the expression of these pivotal genes in P. xylostella.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Fosfatasa Alcalina/metabolismo , Proteínas Bacterianas/farmacología , Agentes de Control Biológico/farmacología , Endotoxinas/farmacología , Proteínas Hemolisinas/farmacología , Proteínas de Insectos/metabolismo , Resistencia a los Insecticidas , Sistema de Señalización de MAP Quinasas , Transportadoras de Casetes de Unión a ATP/genética , Fosfatasa Alcalina/genética , Animales , Bacillus/metabolismo , Toxinas de Bacillus thuringiensis , Proteínas Bacterianas/toxicidad , Agentes de Control Biológico/toxicidad , Endotoxinas/toxicidad , Proteínas Hemolisinas/toxicidad , Proteínas de Insectos/genética , Mucosa Intestinal/metabolismo , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Mariposas Nocturnas/metabolismo , Unión Proteica
8.
Nature ; 477(7363): 203-6, 2011 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-21841803

RESUMEN

Supergenes are tight clusters of loci that facilitate the co-segregation of adaptive variation, providing integrated control of complex adaptive phenotypes. Polymorphic supergenes, in which specific combinations of traits are maintained within a single population, were first described for 'pin' and 'thrum' floral types in Primula and Fagopyrum, but classic examples are also found in insect mimicry and snail morphology. Understanding the evolutionary mechanisms that generate these co-adapted gene sets, as well as the mode of limiting the production of unfit recombinant forms, remains a substantial challenge. Here we show that individual wing-pattern morphs in the polymorphic mimetic butterfly Heliconius numata are associated with different genomic rearrangements at the supergene locus P. These rearrangements tighten the genetic linkage between at least two colour-pattern loci that are known to recombine in closely related species, with complete suppression of recombination being observed in experimental crosses across a 400-kilobase interval containing at least 18 genes. In natural populations, notable patterns of linkage disequilibrium (LD) are observed across the entire P region. The resulting divergent haplotype clades and inversion breakpoints are found in complete association with wing-pattern morphs. Our results indicate that allelic combinations at known wing-patterning loci have become locked together in a polymorphic rearrangement at the P locus, forming a supergene that acts as a simple switch between complex adaptive phenotypes found in sympatry. These findings highlight how genomic rearrangements can have a central role in the coexistence of adaptive phenotypes involving several genes acting in concert, by locally limiting recombination and gene flow.


Asunto(s)
Mariposas Diurnas/genética , Cromosomas de Insectos/genética , Reordenamiento Génico/genética , Genes de Insecto/genética , Imitación Molecular/genética , Polimorfismo Genético/genética , Alelos , Animales , Mariposas Diurnas/anatomía & histología , Mariposas Diurnas/fisiología , Paseo de Cromosoma , Ligamiento Genético/genética , Haplotipos/genética , Imitación Molecular/fisiología , Datos de Secuencia Molecular , Familia de Multigenes/genética , Fenotipo , Pigmentación/genética , Pigmentación/fisiología , Alas de Animales/anatomía & histología , Alas de Animales/metabolismo , Alas de Animales/fisiología
9.
PLoS Genet ; 8(6): e1002752, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22737081

RESUMEN

It is widely documented that hybridisation occurs between many closely related species, but the importance of introgression in adaptive evolution remains unclear, especially in animals. Here, we have examined the role of introgressive hybridisation in transferring adaptations between mimetic Heliconius butterflies, taking advantage of the recent identification of a gene regulating red wing patterns in this genus. By sequencing regions both linked and unlinked to the red colour locus, we found a region that displays an almost perfect genotype by phenotype association across four species, H. melpomene, H. cydno, H. timareta, and H. heurippa. This particular segment is located 70 kb downstream of the red colour specification gene optix, and coalescent analysis indicates repeated introgression of adaptive alleles from H. melpomene into the H. cydno species clade. Our analytical methods complement recent genome scale data for the same region and suggest adaptive introgression has a crucial role in generating adaptive wing colour diversity in this group of butterflies.


Asunto(s)
Adaptación Biológica , Evolución Biológica , Mariposas Diurnas/genética , Especiación Genética , Aislamiento Reproductivo , Animales , Genoma de los Insectos , Genotipo , Hibridación Genética , Fenotipo , Filogenia , Pigmentación/genética , Análisis de Secuencia de ADN , Especificidad de la Especie , Alas de Animales/anatomía & histología
10.
Proc Biol Sci ; 281(1787)2014 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-24920480

RESUMEN

The African Mocker Swallowtail, Papilio dardanus, is a textbook example in evolutionary genetics. Classical breeding experiments have shown that wing pattern variation in this polymorphic Batesian mimic is determined by the polyallelic H locus that controls a set of distinct mimetic phenotypes. Using bacterial artificial chromosome (BAC) sequencing, recombination analyses and comparative genomics, we show that H co-segregates with an interval of less than 500 kb that is collinear with two other Lepidoptera genomes and contains 24 genes, including the transcription factor genes engrailed (en) and invected (inv). H is located in a region of conserved gene order, which argues against any role for genomic translocations in the evolution of a hypothesized multi-gene mimicry locus. Natural populations of P. dardanus show significant associations of specific morphs with single nucleotide polymorphisms (SNPs), centred on en. In addition, SNP variation in the H region reveals evidence of non-neutral molecular evolution in the en gene alone. We find evidence for a duplication potentially driving physical constraints on recombination in the lamborni morph. Absence of perfect linkage disequilibrium between different genes in the other morphs suggests that H is limited to nucleotide positions in the regulatory and coding regions of en. Our results therefore support the hypothesis that a single gene underlies wing pattern variation in P. dardanus.


Asunto(s)
Mariposas Diurnas/genética , Genoma de los Insectos , Proteínas de Insectos/genética , Animales , Mariposas Diurnas/metabolismo , Evolución Molecular , Proteínas de Insectos/metabolismo , Desequilibrio de Ligamiento , Datos de Secuencia Molecular , Fenotipo , Análisis de Secuencia de ADN , Alas de Animales/metabolismo
11.
Front Insect Sci ; 4: 1249103, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38469341

RESUMEN

The sterile insect technique can suppress and eliminate population outbreaks of the Australian horticultural pest, Bactrocera tryoni, the Queensland fruit fly. Sterile males mate with wild females that produce inviable embryos, causing population suppression or elimination. Current sterile insect releases are mixed sex, as the efficient removal of unrequired factory-reared females is not yet possible. In this paper, we assessed the known Drosophila melanogaster temperature-sensitive embryonic lethal alleles shibire (G268D, shits1) and RNA polymerase II 215 (R977C, RpII215ts) for potential use in developing B. tryoni genetic sexing strains (GSS) for the conditional removal of females. Complementation tests in D. melanogaster wild-type or temperature-sensitive genetic backgrounds were performed using the GAL4-UAS transgene expression system. A B. tryoni wild-type shibire isoform partially rescued Drosophila temperature lethality at 29°C by improving survivorship to pupation, while expressing B. tryoni shits1 failed to rescue the lethality, supporting a temperature-sensitive phenotype. Expression of the B. tryoni RpII215 wild-type protein rescued the lethality of D. melanogaster RpII215ts flies at 29°C. Overexpressing the B. tryoni RpII215ts allele in the D. melanogaster wild-type background unexpectedly produced a dominant lethal phenotype at 29°C. The B. tryoni shibire and RpII215 wild-type alleles were able to compensate, to varying degrees, for the function of the D. melanogaster temperature-sensitive proteins, supporting functional conservation across species. Shibire and RpII215 hold potential for developing insect strains that can selectively kill using elevated temperatures; however, alleles with milder effects than shits1 will need to be considered.

12.
Pest Manag Sci ; 80(6): 2950-2964, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38344908

RESUMEN

BACKGROUND: One of the proposed applications of gene drives has been to revert pesticide resistant mutations back to the ancestral susceptible state. Insecticides that have become ineffective because of the rise of resistance could have reinvigorated utility and be used to suppress pest populations again, perhaps at lower application doses. RESULTS: We have created a laboratory model for susceptibility gene drives that replaces field-selected resistant variants of the acetylcholine esterase (Ace) locus of Drosophila melanogaster with ancestral susceptible variants. We constructed a CRISPR/Cas9 homing drive and found that homing occurred in many genetic backgrounds with varying efficiencies. While the drive itself could not be homozygous, it converted resistant alleles into susceptible ones and produced recessive lethal alleles that could suppress populations. Our studies provided evidence for two distinct classes of gene drive resistance (GDR): rather than being mediated by the conventional non-homologous end-joining (NHEJ) pathway, one seemed to involve short homologous repair and the other was defined by genetic background. Additionally, we used simulations to explore a distinct application of susceptibility drives; the use of chemicals to prevent the spread of synthetic gene drives into protected areas. CONCLUSIONS: Insecticide susceptibility gene drives could be useful tools to control pest insects however problems with particularities of target loci and GDR will need to be overcome for them to be effective. Furthermore, realistic patterns of pest dispersal and high insecticide exposure rates would be required if susceptibility were to be useful as a 'safety-switch' to prevent the unwanted spread of gene drives. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Asunto(s)
Acetilcolinesterasa , Drosophila melanogaster , Tecnología de Genética Dirigida , Resistencia a los Insecticidas , Animales , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Sistemas CRISPR-Cas , Drosophila melanogaster/genética , Drosophila melanogaster/efectos de los fármacos , Proteínas de Drosophila/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología
13.
Mol Ecol ; 22(3): 814-26, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22924870

RESUMEN

The Heliconius butterflies are a diverse recent radiation comprising multiple levels of divergence with ongoing gene flow between species. The recently sequenced genome of Heliconius melpomene allowed us to investigate the genomic evolution of this group using dense RAD marker sequencing. Phylogenetic analysis of 54 individuals robustly supported reciprocal monophyly of H. melpomene and Heliconius cydno and refuted previous phylogenetic hypotheses that H. melpomene may be paraphylectic with respect to H. cydno. Heliconius timareta also formed a monophyletic clade closely related but distinct from H. cydno with Heliconius heurippa falling within this clade. We find evidence for genetic admixture between sympatric populations of the sister clades H. melpomene and H. cydno/timareta, particularly between H. cydno and H. melpomene from Central America and between H. timareta and H. melpomene from the eastern slopes of the Andes. Between races, divergence is primarily explained by isolation by distance and there is no detectable genetic population structure between parapatric races, suggesting that hybrid zones between races are not zones of secondary contact. Our results also support previous findings that colour pattern loci are shared between populations and species with similar colour pattern elements. Furthermore, this pattern is almost unique to these genomic regions, with only a very small number of other loci showing significant similarity between populations and species with similar colour patterns.


Asunto(s)
Mariposas Diurnas/genética , Flujo Génico , Especiación Genética , Filogenia , Animales , Mariposas Diurnas/clasificación , Genes de Insecto , Sitios Genéticos , Genética de Población , Técnicas de Genotipaje , Geografía , Funciones de Verosimilitud , Pigmentación , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , América del Sur , Simpatría
14.
PLoS Genet ; 6(1): e1000802, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20062520

RESUMEN

The evolution of insecticide resistance is a global constraint to agricultural production. Spinosad is a new, low-environmental-risk insecticide that primarily targets nicotinic acetylcholine receptors (nAChR) and is effective against a wide range of pest species. However, after only a few years of application, field evolved resistance emerged in the diamondback moth, Plutella xylostella, an important pest of brassica crops worldwide. Spinosad resistance in a Hawaiian population results from a single incompletely recessive and autosomal gene, and here we use AFLP linkage mapping to identify the chromosome controlling resistance in a backcross family. Recombinational mapping with more than 700 backcross progeny positioned a putative spinosad target, nAChR alpha 6 (Pxalpha6), at the resistance locus, PxSpinR. A mutation within the ninth intron splice junction of Pxalpha6 results in mis-splicing of transcripts, which produce a predicted protein truncated between the third and fourth transmembrane domains. Additional resistance-associated Pxalpha6 transcripts that excluded the mutation containing exon were detected, and these were also predicted to produce truncated proteins. Identification of the locus of resistance in this important crop pest will facilitate field monitoring of the spread of resistance and offer insights into the genetic basis of spinosad resistance in other species.


Asunto(s)
Proteínas de Insectos/genética , Resistencia a los Insecticidas , Macrólidos/farmacología , Mariposas Nocturnas/fisiología , Empalme del ARN , Receptores Nicotínicos/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Combinación de Medicamentos , Endogamia , Proteínas de Insectos/química , Proteínas de Insectos/metabolismo , Datos de Secuencia Molecular , Mariposas Nocturnas/química , Mariposas Nocturnas/efectos de los fármacos , Mariposas Nocturnas/genética , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Alineación de Secuencia
15.
PLoS Genet ; 6(4): e1000930, 2010 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-20442862

RESUMEN

Homoploid hybrid speciation is the formation of a new hybrid species without change in chromosome number. So far, there has been a lack of direct molecular evidence for hybridization generating novel traits directly involved in animal speciation. Heliconius butterflies exhibit bright aposematic color patterns that also act as cues in assortative mating. Heliconius heurippa has been proposed as a hybrid species, and its color pattern can be recreated by introgression of the H. m. melpomene red band into the genetic background of the yellow banded H. cydno cordula. This hybrid color pattern is also involved in mate choice and leads to reproductive isolation between H. heurippa and its close relatives. Here, we provide molecular evidence for adaptive introgression by sequencing genes across the Heliconius red band locus and comparing them to unlinked wing patterning genes in H. melpomene, H. cydno, and H. heurippa. 670 SNPs distributed among 29 unlinked coding genes (25,847bp) showed H. heurippa was related to H. c. cordula or the three species were intermixed. In contrast, among 344 SNPs distributed among 13 genes in the red band region (18,629bp), most showed H. heurippa related with H. c. cordula, but a block of around 6,5kb located in the 3' of a putative kinesin gene grouped H. heurippa with H. m. melpomene, supporting the hybrid introgression hypothesis. Genealogical reconstruction showed that this introgression occurred after divergence of the parental species, perhaps around 0.43Mya. Expression of the kinesin gene is spatially restricted to the distal region of the forewing, suggesting a mechanism for pattern regulation. This gene therefore constitutes the first molecular evidence for adaptive introgression during hybrid speciation and is the first clear candidate for a Heliconius wing patterning locus.


Asunto(s)
Mariposas Diurnas/genética , Especiación Genética , Animales , Quimera , Genética de Población , Alas de Animales/crecimiento & desarrollo
16.
PLoS Genet ; 6(2): e1000794, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20140188

RESUMEN

Wing patterning in Heliconius butterflies is a longstanding example of both Müllerian mimicry and phenotypic radiation under strong natural selection. The loci controlling such patterns are "hotspots" for adaptive evolution with great allelic diversity across different species in the genus. We characterise nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium, and candidate gene expression at two loci and across multiple hybrid zones in Heliconius melpomene and relatives. Alleles at HmB control the presence or absence of the red forewing band, while alleles at HmYb control the yellow hindwing bar. Across HmYb two regions, separated by approximately 100 kb, show significant genotype-by-phenotype associations that are replicated across independent hybrid zones. In contrast, at HmB a single peak of association indicates the likely position of functional sites at three genes, encoding a kinesin, a G-protein coupled receptor, and an mRNA splicing factor. At both HmYb and HmB there is evidence for enhanced linkage disequilibrium (LD) between associated sites separated by up to 14 kb, suggesting that multiple sites are under selection. However, there was no evidence for reduced variation or deviations from neutrality that might indicate a recent selective sweep, consistent with these alleles being relatively old. Of the three genes showing an association with the HmB locus, the kinesin shows differences in wing disc expression between races that are replicated in the co-mimic, Heliconius erato, providing striking evidence for parallel changes in gene expression between Müllerian co-mimics. Wing patterning loci in Heliconius melpomene therefore show a haplotype structure maintained by selection, but no evidence for a recent selective sweep. The complex genetic pattern contrasts with the simple genetic basis of many adaptive traits studied previously, but may provide a better model for most adaptation in natural populations that has arisen over millions rather than tens of years.


Asunto(s)
Adaptación Fisiológica/genética , Genética de Población , Genoma/genética , Imitación Molecular/genética , Animales , Mariposas Diurnas/genética , Cromosomas Artificiales Bacterianos/genética , Regulación de la Expresión Génica , Genes de Insecto/genética , Sitios Genéticos/genética , Variación Genética , Genotipo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Desequilibrio de Ligamiento/genética , Fenotipo , Filogenia , Dinámica Poblacional , Selección Genética/genética , Especificidad de la Especie
17.
PLoS Genet ; 6(2): e1000796, 2010 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-20140239

RESUMEN

Wing pattern evolution in Heliconius butterflies provides some of the most striking examples of adaptation by natural selection. The genes controlling pattern variation are classic examples of Mendelian loci of large effect, where allelic variation causes large and discrete phenotypic changes and is responsible for both convergent and highly divergent wing pattern evolution across the genus. We characterize nucleotide variation, genotype-by-phenotype associations, linkage disequilibrium (LD), and candidate gene expression patterns across two unlinked genomic intervals that control yellow and red wing pattern variation among mimetic forms of Heliconius erato. Despite very strong natural selection on color pattern, we see neither a strong reduction in genetic diversity nor evidence for extended LD across either patterning interval. This observation highlights the extent that recombination can erase the signature of selection in natural populations and is consistent with the hypothesis that either the adaptive radiation or the alleles controlling it are quite old. However, across both patterning intervals we identified SNPs clustered in several coding regions that were strongly associated with color pattern phenotype. Interestingly, coding regions with associated SNPs were widely separated, suggesting that color pattern alleles may be composed of multiple functional sites, conforming to previous descriptions of these loci as "supergenes." Examination of gene expression levels of genes flanking these regions in both H. erato and its co-mimic, H. melpomene, implicate a gene with high sequence similarity to a kinesin as playing a key role in modulating pattern and provides convincing evidence for parallel changes in gene regulation across co-mimetic lineages. The complex genetic architecture at these color pattern loci stands in marked contrast to the single casual mutations often identified in genetic studies of adaptation, but may be more indicative of the type of genetic changes responsible for much of the adaptive variation found in natural populations.


Asunto(s)
Adaptación Fisiológica/genética , Mariposas Diurnas/genética , Genética de Población , Genoma/genética , Animales , Cromosomas Artificiales Bacterianos/genética , Regulación de la Expresión Génica , Sitios Genéticos/genética , Variación Genética , Genotipo , Hibridación Genética , Desequilibrio de Ligamiento/genética , Sistemas de Lectura Abierta/genética , Perú , Fenotipo , Mapeo Físico de Cromosoma , Pigmentación/genética , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN
18.
Toxins (Basel) ; 15(5)2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-37235357

RESUMEN

Bacillus thuringiensis (Bt) three-domain Cry toxins are highly successful biological pesticides; however, the mechanism through which they cause death to targeted larval midgut cells is not fully understood. Herein, we challenged transgenic Bt-susceptible Drosophila melanogaster larvae with moderate doses of activated Cry1Ac toxin and assessed the midgut tissues after one, three, and five hours using transmission electron microscopy and transcriptome sequencing. Larvae treated with Cry1Ac showed dramatic changes to their midgut morphology, including shortened microvilli, enlarged vacuoles, thickened peritrophic membranes, and swelling of the basal labyrinth, suggesting water influx. Transcriptome analysis showed that innate immune responses were repressed, genes involved with cell death pathways were largely unchanged, and mitochondria-related genes were strongly upregulated following toxin exposure. Defective mitochondria produced after toxin exposure were likely to contribute to significant levels of oxidative stress, which represent a common physiological response to a range of toxic chemicals. Significant reductions in both mitochondrial aconitase activity and ATP levels in the midgut tissue supported a rapid increase in reactive oxygen species (ROS) following exposure to Cry1Ac. Overall, these findings support the role of water influx, midgut cell swelling, and ROS activity in response to moderate concentrations of Cry1Ac.


Asunto(s)
Bacillus thuringiensis , Insecticidas , Mariposas Nocturnas , Animales , Larva/metabolismo , Insecticidas/toxicidad , Insecticidas/metabolismo , Mariposas Nocturnas/genética , Especies Reactivas de Oxígeno/metabolismo , Drosophila melanogaster/metabolismo , Endotoxinas/toxicidad , Endotoxinas/metabolismo , Bacillus thuringiensis/metabolismo , Toxinas de Bacillus thuringiensis/metabolismo , Estrés Oxidativo , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/toxicidad , Proteínas Hemolisinas/metabolismo , Proteínas Bacterianas/metabolismo , Resistencia a los Insecticidas/genética
19.
BMC Evol Biol ; 11: 358, 2011 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-22151691

RESUMEN

BACKGROUND: Cryptic population structure can be an indicator of incipient speciation or historical processes. We investigated a previously documented deep break in the mitochondrial haplotypes of Heliconius erato chestertonii to explore the possibility of cryptic speciation, and also the possible presence of endosymbiont bacteria that might drive mitochondrial population structure. RESULTS: Among a sample of 315 individuals from 16 populations of western Colombia, two principal mtDNA clades were detected with 2.15% divergence and we confirmed this structure was weakly associated with geography. The first mtDNA clade included 87% of individuals from northern populations and was the sister group of H. erato members of Andes western, while the second clade contained most individuals from southern populations (78%), which shared haplotypes with an Ecuadorian race of H. erato. In contrast, analysis using AFLP markers showed H. e. chestertonii to be a genetically homogeneous species with no association between mitochondrial divergence and AFLP structure. The lack of congruence between molecular markers suggests that cryptic speciation is not a plausible explanation for the deep mitochondrial divergence in H. e chestertonii. We also carried out the first tests for the presence of endosymbiontic bacteria in Heliconius, and identified two distinct lineages of Wolbachia within H. e. chestertonii. However, neither of the principal mitochondrial clades of H. e. chestertonii was directly associated with the patterns of infection. CONCLUSIONS: We conclude that historical demographic processes are the most likely explanation for the high mitochondrial differentiation in H. e. chestertonii, perhaps due to gene flow between Cauca valley H. e. chestertonii and west Pacific slope populations of H. erato.


Asunto(s)
Mariposas Diurnas/genética , ADN Mitocondrial/genética , Evolución Molecular , Especiación Genética , Simbiosis , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Animales , Bacterias , Mariposas Diurnas/clasificación , Mariposas Diurnas/microbiología , Análisis por Conglomerados , Colombia , Genética de Población , Haplotipos , Filogenia , Polimorfismo Genético , Análisis de Secuencia de ADN
20.
Insects ; 12(3)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805657

RESUMEN

A major obstacle of sterile insect technique (SIT) programs is the availability of robust sex-separation systems for conditional removal of females. Sterilized male-only releases improve SIT efficiency and cost-effectiveness for agricultural pests, whereas it is critical to remove female disease-vector pests prior to release as they maintain the capacity to transmit disease. Some of the most successful Genetic Sexing Strains (GSS) reared and released for SIT control were developed for Mediterranean fruit fly (Medfly), Ceratitis capitata, and carry a temperature sensitive lethal (tsl) mutation that eliminates female but not male embryos when heat treated. The Medfly tsl mutation was generated by random mutagenesis and the genetic mechanism causing this valuable heat sensitive phenotype remains unknown. Conditional temperature sensitive lethal mutations have also been developed using random mutagenesis in the insect model, Drosophila melanogaster, and were used for some of the founding genetic research published in the fields of neuro- and developmental biology. Here we review mutations in select D. melanogaster genes shibire, Notch, RNA polymerase II 215kDa, pale, transformer-2, Dsor1 and CK2α that cause temperature sensitive phenotypes. Precise introduction of orthologous point mutations in pest insect species with CRISPR/Cas9 genome editing technology holds potential to establish GSSs with embryonic lethality to improve and advance SIT pest control.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda