Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Chemistry ; 29(9): e202203140, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36385513

RESUMEN

Enzyme-catalyzed reaction cascades play an increasingly important role for the sustainable manufacture of diverse chemicals from renewable feedstocks. For instance, dehydratases from the ilvD/EDD superfamily have been embedded into a cascade to convert glucose via pyruvate to isobutanol, a platform chemical for the production of aviation fuels and other valuable materials. These dehydratases depend on the presence of both a Fe-S cluster and a divalent metal ion for their function. However, they also represent the rate-limiting step in the cascade. Here, catalytic parameters and the crystal structure of the dehydratase from Paralcaligenes ureilyticus (PuDHT, both in presence of Mg2+ and Mn2+ ) were investigated. Rate measurements demonstrate that the presence of stoichiometric concentrations Mn2+ promotes higher activity than Mg2+ , but at high concentrations the former inhibits the activity of PuDHT. Molecular dynamics simulations identify the position of a second binding site for the divalent metal ion. Only binding of Mn2+ (not Mg2+ ) to this site affects the ligand environment of the catalytically essential divalent metal binding site, thus providing insight into an inhibitory mechanism of Mn2+ at higher concentrations. Furthermore, in silico docking identified residues that play a role in determining substrate binding and selectivity. The combined data inform engineering approaches to design an optimal dehydratase for the cascade.


Asunto(s)
Hidroliasas , Secuencia de Aminoácidos , Hidroliasas/química , Sitios de Unión , Catálisis
2.
Chemistry ; 28(44): e202200927, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35535733

RESUMEN

There is an urgent global need for the development of novel therapeutics to combat the rise of various antibiotic-resistant superbugs. Enzymes of the branched-chain amino acid (BCAA) biosynthesis pathway are an attractive target for novel anti-microbial drug development. Dihydroxy-acid dehydratase (DHAD) is the third enzyme in the BCAA biosynthesis pathway. It relies on an Fe-S cluster for catalytic activity and has recently also gained attention as a catalyst in cell-free enzyme cascades. Two types of Fe-S clusters have been identified in DHADs, i.e. [2Fe-2S] and [4Fe-4S], with the latter being more prone to degradation in the presence of oxygen. Here, we characterise two DHADs from bacterial human pathogens, Staphylococcus aureus and Campylobacter jejuni (SaDHAD and CjDHAD). Purified SaDHAD and CjDHAD are virtually inactive, but activity could be reversibly reconstituted in vitro (up to ∼19,000-fold increase with kcat as high as ∼6.7 s-1 ). Inductively-coupled plasma-optical emission spectroscopy (ICP-OES) measurements are consistent with the presence of [4Fe-4S] clusters in both enzymes. N-isopropyloxalyl hydroxamate (IpOHA) and aspterric acid are both potent inhibitors for both SaDHAD (Ki =7.8 and 51.6 µM, respectively) and CjDHAD (Ki =32.9 and 35.1 µM, respectively). These compounds thus present suitable starting points for the development of novel anti-microbial chemotherapeutics.


Asunto(s)
Farmacorresistencia Bacteriana , Hidroliasas , Proteínas Bacterianas/química , Campylobacter jejuni/efectos de los fármacos , Campylobacter jejuni/enzimología , Catálisis , Hidroliasas/química , Proteínas Hierro-Azufre/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/enzimología
3.
Chemistry ; 26(41): 8958-8968, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32198779

RESUMEN

Ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid biosynthesis pathway, is a potential drug target for bacterial infections including Mycobacterium tuberculosis. Here, we have screened the Medicines for Malaria Venture Pathogen Box against purified M. tuberculosis (Mt) KARI and identified two compounds that have Ki values below 200 nm. In Mt cell susceptibility assays one of these compounds exhibited an IC50 value of 0.8 µm. Co-crystallization of this compound, 3-((methylsulfonyl)methyl)-2H-benzo[b][1,4]oxazin-2-one (MMV553002), in complex with Staphylococcus aureus KARI, which has 56 % identity with Mt KARI, NADPH and Mg2+ yielded a structure to 1.72 Šresolution. However, only a hydrolyzed product of the inhibitor (i.e. 3-(methylsulfonyl)-2-oxopropanic acid, missing the 2-aminophenol attachment) is observed in the active site. Surprisingly, Mt cell susceptibility assays showed that the 2-aminophenol product is largely responsible for the anti-TB activity of the parent compound. Thus, 3-(methylsulfonyl)-2-oxopropanic acid was identified as a potent KARI inhibitor that could be further explored as a potential biocidal agent and we have shown 2-aminophenol, as an anti-TB drug lead, especially given it has low toxicity against human cells. The study highlights that careful analysis of broad screening assays is required to correctly interpret cell-based activity data.


Asunto(s)
Cetoácido Reductoisomerasa/metabolismo , Magnesio/química , Mycobacterium tuberculosis/enzimología , NADP/química , Staphylococcus aureus/metabolismo , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Humanos , Cetoácido Reductoisomerasa/química , Mycobacterium tuberculosis/química , NADP/metabolismo , Staphylococcus aureus/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda