Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Neuroimage ; 290: 120569, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38461959

RESUMEN

Functional near infrared spectroscopy (fNIRS) and functional magnetic resonance imaging (fMRI) both measure the hemodynamic response, and so both imaging modalities are expected to have a strong correspondence in regions of cortex adjacent to the scalp. To assess whether fNIRS can be used clinically in a manner similar to fMRI, 22 healthy adult participants underwent same-day fMRI and whole-head fNIRS testing while they performed separate motor (finger tapping) and visual (flashing checkerboard) tasks. Analyses were conducted within and across subjects for each imaging approach, and regions of significant task-related activity were compared on the cortical surface. The spatial correspondence between fNIRS and fMRI detection of task-related activity was good in terms of true positive rate, with fNIRS overlap of up to 68 % of the fMRI for analyses across subjects (group analysis) and an average overlap of up to 47.25 % for individual analyses within subject. At the group level, the positive predictive value of fNIRS was 51 % relative to fMRI. The positive predictive value for within subject analyses was lower (41.5 %), reflecting the presence of significant fNIRS activity in regions without significant fMRI activity. This could reflect task-correlated sources of physiologic noise and/or differences in the sensitivity of fNIRS and fMRI measures to changes in separate (vs. combined) measures of oxy and de-oxyhemoglobin. The results suggest whole-head fNIRS as a noninvasive imaging modality with promising clinical utility for the functional assessment of brain activity in superficial regions of cortex physically adjacent to the skull.


Asunto(s)
Imagen por Resonancia Magnética , Espectroscopía Infrarroja Corta , Adulto , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía Infrarroja Corta/métodos , Hemodinámica/fisiología , Cráneo
2.
Brain Topogr ; 37(5): 907-920, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38722465

RESUMEN

This study describes electroencephalography (EEG) measurements during a simple finger movement in people with stroke to understand how temporal patterns of cortical activation and network connectivity align with prolonged muscle contraction at the end of a task. We investigated changes in the EEG temporal patterns in the beta band (13-26 Hz) of people with chronic stroke (N = 10, 7 F/3 M) and controls (N = 10, 7 F/3 M), during and after a cued movement of the index finger. We quantified the change in beta band EEG power relative to baseline as activation at each electrode and the change in task-based phase-locking value (tbPLV) and beta band task-based coherence (tbCoh) relative to baseline coherence as connectivity between EEG electrodes. Finger movements were associated with a decrease in beta power (event related desynchronization (ERD)) followed by an increase in beta power (event related resynchronization (ERS)). The ERS in the post task period was lower in the stroke group (7%), compared to controls (44%) (p < 0.001) and the transition from ERD to ERS was delayed in the stroke group (1.43 s) compared to controls (0.90 s) in the C3 electrode (p = 0.007). In the same post movement period, the stroke group maintained a heightened tbPLV (p = 0.030 for time to baseline of the C3:Fz electrode pair) and did not show the decrease in connectivity in electrode pair C3:Fz that was observed in controls (tbPLV: p = 0.006; tbCoh: p = 0.023). Our results suggest that delays in cortical deactivation patterns following movement coupled with changes in the time course of connectivity between the sensorimotor and frontal cortices in the stroke group might explain clinical observations of prolonged muscle activation in people with stroke. This prolonged activation might be attributed to the combination of cortical reorganization and changes to sensory feedback post-stroke.


Asunto(s)
Electroencefalografía , Dedos , Accidente Cerebrovascular , Humanos , Dedos/fisiopatología , Dedos/fisiología , Masculino , Femenino , Accidente Cerebrovascular/fisiopatología , Persona de Mediana Edad , Anciano , Electroencefalografía/métodos , Movimiento/fisiología , Corteza Cerebral/fisiopatología , Corteza Cerebral/fisiología , Ritmo beta/fisiología , Adulto
3.
Exp Brain Res ; 241(1): 231-247, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36469052

RESUMEN

We examined a key aspect of sensorimotor skill: the capability to correct performance errors that arise mid-movement. Participants grasped the handle of a robot that imposed a nominal viscous resistance to hand movement. They watched a target move pseudo-randomly just above the horizontal plane of hand motion and initiated quick interception movements when cued. On some trials, the robot's viscosity or the target's speed changed without warning coincident with the GO cue. We fit a sum-of-Gaussians model to mechanical power measured at the handle to determine the number, magnitude, and relative timing of submovements occurring in each interception attempt. When a single submovement successfully intercepted the target, capture times averaged 410 ms. Sometimes, two or more submovements were required. Initial error corrections typically occurred before feedback could indicate the target had been captured or missed. Error corrections occurred sooner after movement onset in response to mechanical viscosity increases (at 154 ms) than to unprovoked errors on control trials (215 ms). Corrections occurred later (272 ms) in response to viscosity decreases. The latency of corrections for target speed changes did not differ from those in control trials. Remarkably, these early error corrections accommodated the altered testing conditions; speed/viscosity increases elicited more vigorous corrections than in control trials with unprovoked errors; speed/viscosity decreases elicited less vigorous corrections. These results suggest that the brain monitors and predicts the outcome of evolving movements, rapidly infers causes of mid-movement errors, and plans and executes corrections-all within 300 ms of movement onset.


Asunto(s)
Percepción de Movimiento , Desempeño Psicomotor , Humanos , Desempeño Psicomotor/fisiología , Tecnología Háptica , Mano/fisiología , Percepción de Movimiento/fisiología , Movimiento
4.
J Neuroeng Rehabil ; 19(1): 90, 2022 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-35978431

RESUMEN

BACKGROUND: People with multiple sclerosis (PwMS) have balance deficits while ambulating through environments that contain moving objects or visual manipulations to perceived self-motion. However, their ability to parse object from self-movement has not been explored. The purpose of this research was to examine the effect of medial-lateral oscillations of the visual field and of objects within the scene on gait in PwMS and healthy age-matched controls using virtual reality (VR). METHODS: Fourteen PwMS (mean age 49 ± 11 years, functional gait assessment score of 27.8 ± 1.8, and Berg Balance scale score 54.7 ± 1.5) and eleven healthy controls (mean age: 53 ± 12 years) participated in this study. Dynamic balance control was assessed while participants walked on a treadmill at a self-selected speed while wearing a VR headset that projected an immersive forest scene. Visual conditions consisted of (1) no visual manipulations (speed-matched anterior/posterior optical flow), (2) 0.175 m mediolateral translational oscillations of the scene that consisted of low pairing (0.1 and 0.31 Hz) or (3) high pairing (0.15 and 0.465 Hz) frequencies, (4) 5 degree medial-lateral rotational oscillations of virtual trees at a low frequency pairing (0.1 and 0.31 Hz), and (5) a combination of the tree and scene movements in (3) and (4). RESULTS: We found that both PwMS and controls exhibited greater instability and visuomotor entrainment to simulated mediolateral translation of the visual field (scene) during treadmill walking. This was demonstrated by significant (p < 0.05) increases in mean step width and variability and center of mass sway. Visuomotor entrainment was demonstrated by high coherence between center of mass sway and visual motion (magnitude square coherence = ~ 0.5 to 0.8). Only PwMS exhibited significantly greater instability (higher step width variability and center of mass sway) when objects moved within the scene (i.e., swaying trees). CONCLUSION: Results suggest the presence of visual motion processing errors in PwMS that reduced dynamic stability. Specifically, object motion (via tree sway) was not effectively parsed from the observer's self-motion. Identifying this distinction between visual object motion and self-motion detection in MS provides insight regarding stability control in environments with excessive external movement, such as those encountered in daily life.


Asunto(s)
Esclerosis Múltiple , Adulto , Anciano , Prueba de Esfuerzo/métodos , Marcha , Humanos , Persona de Mediana Edad , Modalidades de Fisioterapia , Equilibrio Postural , Caminata
5.
Exp Brain Res ; 239(8): 2445-2459, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34106298

RESUMEN

We examined how implicit and explicit memories contribute to sensorimotor adaptation of movement extent during goal-directed reaching. Twenty subjects grasped the handle of a horizontal planar robot that rendered spring-like resistance to movement. Subjects made rapid "out-and-back" reaches to capture a remembered visual target at the point of maximal reach extent. The robot's resistance changed unpredictably between reaches, inducing target capture errors that subjects attempted to correct from one trial to the next. Each subject performed over 400 goal-directed reaching trials. Some trials were performed without concurrent visual cursor feedback of hand motion. Some trials required self-assessment of performance between trials, whereby subjects reported peak reach extent on the most recent trial. This was done by either moving a cursor on a horizontal display (visual self-assessment), or by moving the robot's handle back to the recalled location (proprioceptive self-assessment). Control condition trials performed either without or with concurrent visual cursor feedback of hand motion did not require self-assessments. We used step-wise linear regression analyses to quantify the extent to which prior reach errors and explicit memories of reach extent contribute to subsequent reach performance. Consistent with prior reports, providing concurrent visual feedback of hand motion increased reach accuracy and reduced the impact of past performance errors on future performance, relative to the corresponding no-vision control condition. By contrast, we found no impact of interposed self-assessment on subsequent reach performance or on how prior target capture errors influence subsequent reach performance. Self-assessments were biased toward the remembered target location and they spanned a compressed range of values relative to actual reach extents, demonstrating that declarative memories of reach performance systematically differed from actual performances. We found that multilinear regression could best account for observed data variability when the regression model included only implicit memories of prior reach performance; including explicit memories (self-assessments) in the model did not improve its predictive accuracy. We conclude therefore that explicit memories of prior reach performance do not contribute to implicit sensorimotor adaptation of movement extent during goal-directed reaching under conditions of environmental uncertainty.


Asunto(s)
Objetivos , Desempeño Psicomotor , Adaptación Fisiológica , Retroalimentación Sensorial , Mano , Humanos , Movimiento
6.
J Neurophysiol ; 122(5): 2156-2172, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31553682

RESUMEN

Whereas numerous motor control theories describe the control of arm trajectory during reach, the control of stabilization in a constant arm position (i.e., visuomotor control of arm posture) is less clear. Three potential mechanisms have been proposed for visuomotor control of arm posture: 1) increased impedance of the arm through co-contraction of antagonistic muscles, 2) corrective muscle activity via spinal/supraspinal reflex circuits, and/or 3) intermittent voluntary corrections to errors in position. We examined the cortical mechanisms of visuomotor control of arm posture and tested the hypothesis that cortical error networks contribute to arm stabilization. We collected electroencephalography (EEG) data from 10 young healthy participants across four experimental planar movement tasks. We examined brain activity associated with intermittent voluntary corrections of position error and antagonist co-contraction during stabilization. EEG beta-band (13-26 Hz) power fluctuations were used as indicators of brain activity, and coherence between EEG electrodes was used as a measure of functional connectivity between brain regions. Cortical activity in the sensory, motor, and visual areas during arm stabilization was similar to activity during volitional arm movements and was larger than activity during co-contraction of the arm. However, cortical connectivity between the sensorimotor and visual regions was higher during arm stabilization compared with volitional arm movements and co-contraction of the arm. The difference in cortical activity and connectivity between tasks might be attributed to an underlying visuomotor error network used to update motor commands for visuomotor control of arm posture.NEW & NOTEWORTHY We examined cortical activity and connectivity during control of stabilization in a constant arm position (i.e., visuomotor control of arm posture). Our findings provide evidence for cortical involvement during control of stabilization in a constant arm position. A visuomotor error network appears to be active and may update motor commands for visuomotor control of arm posture.


Asunto(s)
Brazo/fisiología , Desempeño Psicomotor , Corteza Sensoriomotora/fisiología , Adulto , Ritmo beta , Femenino , Humanos , Masculino , Contracción Muscular , Músculo Esquelético/fisiología
7.
Exp Brain Res ; 237(10): 2665-2673, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31396645

RESUMEN

Detection of 3D object-motion trajectories depends on the integration of two distinct visual cues: translational displacement and looming. Electrophysiological studies have identified distinct neuronal populations, whose activity depends on the precise motion cues present in the stimulus. This distinction, however, has been less clear in humans, and it is confounded by differences in the behavioral task being performed. We analyzed whole-brain fMRI, while subjects performed a common time-to-arrival task for objects moving along three trajectories: moving directly towards the observer (collision course), with trajectories parallel to the line of sight (passage course), and with trajectories perpendicular to the line of sight (gap closure). We found that there was substantial overlap in the pattern of activation associated with each of the three tasks, with differences among conditions limited to the human motion area (hMT+), which showed greater activation extent in the gap closure condition than for either collision or passage courses. These results support a common substrate for temporal judgments of an object's time-to-arrival, wherein the special cases of object motion directly toward, or perpendicular to, the observer represent two extremes within the broader continuum of 3D passage trajectories relative to the observer.


Asunto(s)
Señales (Psicología) , Percepción de Movimiento/fisiología , Análisis y Desempeño de Tareas , Corteza Visual/fisiología , Femenino , Humanos , Juicio/fisiología , Masculino , Movimiento (Física) , Estimulación Luminosa/métodos
8.
J Neurosci ; 33(39): 15414-24, 2013 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-24068810

RESUMEN

Neuroanatomical models hypothesize a role for the dorsal auditory pathway in phonological processing as a feedforward efferent system (Davis and Johnsrude, 2007; Rauschecker and Scott, 2009; Hickok et al., 2011). But the functional organization of the pathway, in terms of time course of interactions between auditory, somatosensory, and motor regions, and the hemispheric lateralization pattern is largely unknown. Here, ambiguous duplex syllables, with elements presented dichotically at varying interaural asynchronies, were used to parametrically modulate phonological processing and associated neural activity in the human dorsal auditory stream. Subjects performed syllable and chirp identification tasks, while event-related potentials and functional magnetic resonance images were concurrently collected. Joint independent component analysis was applied to fuse the neuroimaging data and study the neural dynamics of brain regions involved in phonological processing with high spatiotemporal resolution. Results revealed a highly interactive neural network associated with phonological processing, composed of functional fields in posterior temporal gyrus (pSTG), inferior parietal lobule (IPL), and ventral central sulcus (vCS) that were engaged early and almost simultaneously (at 80-100 ms), consistent with a direct influence of articulatory somatomotor areas on phonemic perception. Left hemispheric lateralization was observed 250 ms earlier in IPL and vCS than pSTG, suggesting that functional specialization of somatomotor (and not auditory) areas determined lateralization in the dorsal auditory pathway. The temporal dynamics of the dorsal auditory pathway described here offer a new understanding of its functional organization and demonstrate that temporal information is essential to resolve neural circuits underlying complex behaviors.


Asunto(s)
Vías Auditivas/fisiología , Encéfalo/fisiología , Fonética , Adulto , Percepción Auditiva/fisiología , Mapeo Encefálico , Potenciales Evocados , Femenino , Lateralidad Funcional , Humanos , Masculino , Red Nerviosa/fisiología
9.
J Neuroeng Rehabil ; 11: 170, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25526770

RESUMEN

BACKGROUND: Intention tremor and dysmetria are leading causes of upper extremity disability in Multiple Sclerosis (MS). The development of effective therapies to reduce tremor and dysmetria is hampered by insufficient understanding of how the distributed, multi-focal lesions associated with MS impact sensorimotor control in the brain. Here we describe a systems-level approach to characterizing sensorimotor control and use this approach to examine how sensory and motor processes are differentially impacted by MS. METHODS: Eight subjects with MS and eight age- and gender-matched healthy control subjects performed visually-guided flexion/extension tasks about the elbow to characterize a sensory feedback control model that includes three sensory feedback pathways (one for vision, another for proprioception and a third providing an internal prediction of the sensory consequences of action). The model allows us to characterize impairments in sensory feedback control that contributed to each MS subject's tremor. RESULTS: Models derived from MS subject performance differed from those obtained for control subjects in two ways. First, subjects with MS exhibited markedly increased visual feedback delays, which were uncompensated by internal adaptive mechanisms; stabilization performance in individuals with the longest delays differed most from control subject performance. Second, subjects with MS exhibited misestimates of arm dynamics in a way that was correlated with tremor power. Subject-specific models accurately predicted kinematic performance in a reach and hold task for neurologically-intact control subjects while simulated performance of MS patients had shorter movement intervals and larger endpoint errors than actual subject responses. This difference between simulated and actual performance is consistent with a strategic compensatory trade-off of movement speed for endpoint accuracy. CONCLUSIONS: Our results suggest that tremor and dysmetria may be caused by limitations in the brain's ability to adapt sensory feedback mechanisms to compensate for increases in visual information processing time, as well as by errors in compensatory adaptations of internal estimates of arm dynamics.


Asunto(s)
Encéfalo/fisiopatología , Retroalimentación Sensorial/fisiología , Esclerosis Múltiple/fisiopatología , Propiocepción/fisiología , Temblor/fisiopatología , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Movimiento/fisiología , Esclerosis Múltiple/complicaciones , Proyectos Piloto , Temblor/etiología , Adulto Joven
10.
Sci Rep ; 14(1): 17736, 2024 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085280

RESUMEN

Methods to quantify cortical hyperexcitability are of enormous interest for mapping epileptic networks in patients with focal epilepsy. We hypothesize that, in the resting state, cortical hyperexcitability increases firing-rate correlations between neuronal populations within seizure onset zones (SOZs). This hypothesis predicts that in the gamma frequency band (40-200 Hz), amplitude envelope correlations (AECs), a relatively straightforward measure of functional connectivity, should be elevated within SOZs compared to other areas. To test this prediction, we analyzed archived samples of interictal electrocorticographic (ECoG) signals recorded from patients who became seizure-free after surgery targeting SOZs identified by multiday intracranial recordings. We show that in the gamma band, AECs between nodes within SOZs are markedly elevated relative to those elsewhere. AEC-based node strength, eigencentrality, and clustering coefficient are also robustly increased within the SOZ with maxima in the low-gamma band (permutation test Z-scores > 8) and yield moderate discriminability of the SOZ using ROC analysis (maximal mean AUC ~ 0.73). By contrast to AECs, phase locking values (PLVs), a measure of narrow-band phase coupling across sites, and PLV-based graph metrics discriminate the seizure onset nodes weakly. Our results suggest that gamma band AECs may provide a clinically useful marker of cortical hyperexcitability in focal epilepsy.


Asunto(s)
Electrocorticografía , Epilepsias Parciales , Humanos , Epilepsias Parciales/fisiopatología , Masculino , Femenino , Ritmo Gamma/fisiología , Red Nerviosa/fisiopatología , Adulto , Adolescente , Electroencefalografía , Adulto Joven , Mapeo Encefálico/métodos
11.
PLoS One ; 18(12): e0266586, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38127998

RESUMEN

The purpose of this study was to characterize changes in cortical activity and connectivity in stroke survivors when vibration is applied to the wrist flexor tendons during a visuomotor tracking task. Data were collected from 10 chronic stroke participants and 10 neurologically-intact controls while tracking a target through a figure-8 pattern in the horizontal plane. Electroencephalography (EEG) was used to measure cortical activity (beta band desynchronization) and connectivity (beta band task-based coherence) with movement kinematics and performance error also being recorded during the task. All participants came into our lab on two separate days and performed three blocks (16 trials each, 48 total trials) of tracking, with the middle block including vibration or sham applied at the wrist flexor tendons. The order of the sessions (Vibe vs. Sham) was counterbalanced across participants to prevent ordering effects. During the Sham session, cortical activity increased as the tracking task progressed (over blocks). This effect was reduced when vibration was applied to controls. In contrast, vibration increased cortical activity during the vibration period in participants with stroke. Cortical connectivity increased during vibration, with larger effect sizes in participants with stroke. Changes in tracking performance, standard deviation of hand speed, were observed in both control and stroke groups. Overall, EEG measures of brain activity and connectivity provided insight into effects of vibration on brain control of a visuomotor task. The increases in cortical activity and connectivity with vibration improved patterns of activity in people with stroke. These findings suggest that reactivation of normal cortical networks via tendon vibration may be useful during physical rehabilitation of stroke patients.


Asunto(s)
Accidente Cerebrovascular , Muñeca , Humanos , Muñeca/fisiología , Brazo/fisiología , Vibración , Tendones/fisiología , Daño Encefálico Crónico , Electroencefalografía
12.
J Neurosci Methods ; 369: 109477, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34998799

RESUMEN

BACKGROUND: Meaningful integration of functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) requires knowing whether these measurements reflect the activity of the same neural sources, i.e., estimating the degree of coupling and decoupling between the neuroimaging modalities. NEW METHOD: This paper proposes a method to quantify the coupling and decoupling of fMRI and EEG signals based on the mixing matrix produced by joint independent component analysis (jICA). The method is termed fMRI/EEG-jICA. RESULTS: fMRI and EEG acquired during a syllable detection task with variable syllable presentation rates (0.25-3 Hz) were separated with jICA into two spatiotemporally distinct components, a primary component that increased nonlinearly in amplitude with syllable presentation rate, putatively reflecting an obligatory auditory response, and a secondary component that declined nonlinearly with syllable presentation rate, putatively reflecting an auditory attention orienting response. The two EEG subcomponents were of similar amplitude, but the secondary fMRI subcomponent was ten folds smaller than the primary one. COMPARISON TO EXISTING METHOD: FMRI multiple regression analysis yielded a map more consistent with the primary than secondary fMRI subcomponent of jICA, as determined by a greater area under the curve (0.5 versus 0.38) in a sensitivity and specificity analysis of spatial overlap. CONCLUSION: fMRI/EEG-jICA revealed spatiotemporally distinct brain networks with greater sensitivity than fMRI multiple regression analysis, demonstrating how this method can be used for leveraging EEG signals to inform the detection and functional characterization of fMRI signals. fMRI/EEG-jICA may be useful for studying neurovascular coupling at a macro-level, e.g., in neurovascular disorders.


Asunto(s)
Imagen por Resonancia Magnética , Acoplamiento Neurovascular , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Electroencefalografía/métodos , Imagen por Resonancia Magnética/métodos
13.
Gait Posture ; 90: 92-98, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34419916

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is associated with an increased risk of falls, degeneration of sensory organization, and possible increased reliance on vision for balance control. RESEARCH QUESTION: The aim of this study was to assess differences in standing postural control between people with MS and age and sex matched controls during medial-lateral (ML) oscillations of the visual field, with and without blinders to the lower periphery. METHODS: Ten persons with MS (mean age 54.0 ± 5.3 years) and ten age and sex matched controls (mean age: 56.3 ± 6.0 years) participated in this study. Balance control was assessed while participants stood in a Christie Cave system while wearing stereoscopic glasses that projected an immersive forest scene. Visual conditions consisted of 2 m ML visual oscillations of the scene at five frequencies (0.0, 0.3, 0.6, 0.7 and 0.8 Hz) with and without blinders to block the lower periphery. RESULTS AND SIGNIFICANCE: The results demonstrated that, in comparison to controls, participants with MS had a significantly larger center of pressure sway in both the ML and AP direction to ML visual oscillations. Additionally, participants with MS and controls both increased center of pressure frequency content to the visual oscillation frequency, while participants with MS also increased relative power at the visual oscillation frequency in the AP direction. Blinders of lower periphery reduced the percent power at the visual oscillation frequency in both groups and reduced overall sway in participants with MS during visual oscillations. Overall, results indicate that postural balance is sensitive to visual feedback in people with MS. The elicited AP sway to ML visual oscillation could reflect errors in visual processing for the control of balance, and decreased sway in response to blocking vision of the lower peripheral field could indicate an increased reliance on visual cues to maintain balance.


Asunto(s)
Esclerosis Múltiple , Accidentes por Caídas/prevención & control , Retroalimentación Sensorial , Humanos , Persona de Mediana Edad , Equilibrio Postural , Campos Visuales
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6326-6329, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892560

RESUMEN

Continuous myoelectric prediction of intended limb dynamics has the ability to provide transparent control of a prosthesis by the user. However, the impact on these models of adding a human user into the control loop is less clear. Here, the ability of a User Response Model (URM) to continuously predict EMG activity from gait kinematics and kinetics collected during three mobility tasks (level-ground walking, stair ascent, and stair descent) was examined. Multiple-input, multiple-output NARX-based URMs were developed with two outputs (ankle plantarflexor and dorsiflexor) and variable inputs (ankle kinetics, and shank and/or ankle kinematics). Accuracy in predicting the tibialis anterior and medial gastrocnemius EMG was comparable across URMs regardless of the number of inputs. Stair descent had the lowest accuracy among the mobility tasks. No significant differences in normalized root-mean-square error and cross-correlation were found between URMs with five and nine inputs. A URM that continuously predicts EMG activity from gait kinetics and kinematics could be used to simulate human-in-the-loop myoelectric control of a transtibial prosthesis and examine the stability of the system to changes in the environment or due to control errors.


Asunto(s)
Miembros Artificiales , Marcha , Fenómenos Biomecánicos , Humanos , Cinética , Caminata
15.
Brain Behav ; 11(5): e02097, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33759382

RESUMEN

INTRODUCTION: The purpose of this study was to characterize resting-state cortical networks in chronic stroke survivors using electroencephalography (EEG). METHODS: Electroencephalography data were collected from 14 chronic stroke and 11 neurologically intact participants while they were in a relaxed, resting state. EEG power was normalized to reduce bias and used as an indicator of network activity. Correlations of orthogonalized EEG activity were used as a measure of functional connectivity between cortical regions. RESULTS: We found reduced cortical activity and connectivity in the alpha (p < .05; p = .05) and beta (p < .05; p = .03) bands after stroke while connectivity in the gamma (p = .031) band increased. Asymmetries, driven by a reduction in the lesioned hemisphere, were also noted in cortical activity (p = .001) after stroke. CONCLUSION: These findings suggest that stroke lesions cause a network alteration to more local (higher frequency), asymmetric networks. Understanding changes in cortical networks after stroke could be combined with controllability models to identify (and target) alternate brain network states that reduce functional impairment.


Asunto(s)
Electroencefalografía , Accidente Cerebrovascular , Encéfalo , Mapeo Encefálico , Humanos
16.
Front Neurosci ; 15: 709422, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34483828

RESUMEN

A hallmark of human locomotion is that it continuously adapts to changes in the environment and predictively adjusts to changes in the terrain, both of which are major challenges to lower limb amputees due to the limitations in prostheses and control algorithms. Here, the ability of a single-network nonlinear autoregressive model to continuously predict future ankle kinematics and kinetics simultaneously across ambulation conditions using lower limb surface electromyography (EMG) signals was examined. Ankle plantarflexor and dorsiflexor EMG from ten healthy young adults were mapped to normal ranges of ankle angle and ankle moment during level overground walking, stair ascent, and stair descent, including transitions between terrains (i.e., transitions to/from staircase). Prediction performance was characterized as a function of the time between current EMG/angle/moment inputs and future angle/moment model predictions (prediction interval), the number of past EMG/angle/moment input values over time (sampling window), and the number of units in the network hidden layer that minimized error between experimentally measured values (targets) and model predictions of ankle angle and moment. Ankle angle and moment predictions were robust across ambulation conditions with root mean squared errors less than 1° and 0.04 Nm/kg, respectively, and cross-correlations (R2) greater than 0.99 for prediction intervals of 58 ms. Model predictions at critical points of trip-related fall risk fell within the variability of the ankle angle and moment targets (Benjamini-Hochberg adjusted p > 0.065). EMG contribution to ankle angle and moment predictions occurred consistently across ambulation conditions and model outputs. EMG signals had the greatest impact on noncyclic regions of gait such as double limb support, transitions between terrains, and around plantarflexion and moment peaks. The use of natural muscle activation patterns to continuously predict variations in normal gait and the model's predictive capabilities to counteract electromechanical inherent delays suggest that this approach could provide robust and intuitive user-driven real-time control of a wide variety of lower limb robotic devices, including active powered ankle-foot prostheses.

17.
Pediatr Neurol ; 122: 68-75, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34301451

RESUMEN

BACKGROUND: Changes in cerebral blood flow in response to neuronal activation can be measured by time-dependent fluctuations in hemoglobin species within the brain; this is the basis of functional magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS). There is a clinical need for portable neural imaging systems, such as fNIRS, to accommodate patients who are unable to tolerate an MR environment. OBJECTIVE: Our objective was to compare task-related full-head fNIRS and fMRI signals across cortical regions. METHODS: Eighteen healthy adults completed a same-day fNIRS-fMRI study, in which they performed right- and left-hand finger tapping tasks and a semantic-decision tones-decision task. First- and second-level general linear models were applied to both datasets. RESULTS: The finger tapping task showed that significant fNIRS channel activity over the contralateral primary motor cortex corresponded to surface fMRI activity. Similarly, significant fNIRS channel activity over the bilateral temporal lobe corresponded to the same primary auditory regions as surface fMRI during the semantic-decision tones-decision task. Additional channels were significant for this task that did not correspond to surface fMRI activity. CONCLUSION: Although both imaging modalities showed left-lateralized activation for language processing, the current fNIRS analysis did not show concordant or expected localization at the level necessary for clinical use in individual pediatric epileptic patients. Future work is needed to show whether fNIRS and fMRI are comparable at the source level so that fNIRS can be used in a clinical setting on individual patients. If comparable, such an imaging approach could be applied to children with neurological disorders.


Asunto(s)
Mapeo Encefálico/normas , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Imagen por Resonancia Magnética/normas , Espectroscopía Infrarroja Corta/normas , Adulto , Congresos como Asunto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neurología/métodos , Neurología/normas , Pediatría/métodos , Pediatría/normas , Adulto Joven
18.
Annu Int Conf IEEE Eng Med Biol Soc ; 2020: 3162-3165, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-33018676

RESUMEN

Immersive virtual reality provides a safe and costeffective approach to administrating balance disruption during ambulation. Previous research has explored the effects of applying continuous perturbations in a virtual environment to challenge balance. This pilot study investigates the ability to disrupt balance with discrete visual perturbations during ambulation in healthy young adults. During the study participants walked on a treadmill within a virtual environment. As they walked the entire visual scene was intermittently shifted to the left or right 1 meter over 1 second. The results demonstrate a significant decrease in step length (p <; 0.05) and change in center of mass excursion (p <; 0.05) across participants (N=13). Changes in gait lasted up to three steps after application, suggesting a consistent challenge to dynamic balance control as a result of the discrete visual perturbation . Further, participants did not demonstrate a reduction in response to the discrete visual perturbation with repeated exposure. The results indicate that discrete visual perturbations of a virtual scene can be used to challenge gait and modulate center of mass sway. The use of visual perturbations within a virtual environment to challenge dynamic balance could provide a safer and more affordable avenue for balance rehabilitation by reducing the need for systems that physically perturb balance.


Asunto(s)
Marcha , Realidad Virtual , Prueba de Esfuerzo , Humanos , Proyectos Piloto , Caminata , Adulto Joven
19.
Front Neurosci ; 14: 724, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32742257

RESUMEN

Similar to functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS) detects the changes of hemoglobin species inside the brain, but via differences in optical absorption. Within the near-infrared spectrum, light can penetrate biological tissues and be absorbed by chromophores, such as oxyhemoglobin and deoxyhemoglobin. What makes fNIRS more advantageous is its portability and potential for long-term monitoring. This paper reviews the basic mechanisms of fNIRS and its current clinical applications, the limitations toward more widespread clinical usage of fNIRS, and current efforts to improve the temporal and spatial resolution of fNIRS toward robust clinical usage within subjects. Oligochannel fNIRS is adequate for estimating global cerebral function and it has become an important tool in the critical care setting for evaluating cerebral oxygenation and autoregulation in patients with stroke and traumatic brain injury. When it comes to a more sophisticated utilization, spatial and temporal resolution becomes critical. Multichannel NIRS has improved the spatial resolution of fNIRS for brain mapping in certain task modalities, such as language mapping. However, averaging and group analysis are currently required, limiting its clinical use for monitoring and real-time event detection in individual subjects. Advances in signal processing have moved fNIRS toward individual clinical use for detecting certain types of seizures, assessing autonomic function and cortical spreading depression. However, its lack of accuracy and precision has been the major obstacle toward more sophisticated clinical use of fNIRS. The use of high-density whole head optode arrays, precise sensor locations relative to the head, anatomical co-registration, short-distance channels, and multi-dimensional signal processing can be combined to improve the sensitivity of fNIRS and increase its use as a wide-spread clinical tool for the robust assessment of brain function.

20.
Vision Res ; 48(8): 1040-52, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18304601

RESUMEN

Psychophysical studies point to the existence of specialized mechanisms sensitive to the relative motion between an object and its background. Such mechanisms would seem ideal for the motion-based segmentation of objects; however, their properties and role in processing the visual scene remain unclear. Here we examine the contribution of relative motion mechanisms to the processing of object trajectory. In a series of four psychophysical experiments we examine systematically the effects of relative direction and speed differences on the perceived trajectory of an object against a moving background. We show that background motion systematically influences the discrimination of object direction. Subjects' ability to discriminate direction was consistently better for objects moving opposite a translating background than for objects moving in the same direction as the background. This effect was limited to the case of a translating background and did not affect perceived trajectory for more complex background motions associated with self-motion. We interpret these differences as providing support for the role of relative motion mechanisms in the segmentation and representation of object motions that do not occlude the path of an observer's self-motion.


Asunto(s)
Discriminación en Psicología , Percepción de Movimiento , Humanos , Modelos Psicológicos , Reconocimiento Visual de Modelos , Estimulación Luminosa/métodos , Psicofísica , Umbral Sensorial
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda