Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
J Anim Physiol Anim Nutr (Berl) ; 97(2): 322-30, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22320155

RESUMEN

Bringing the head and neck of ridden horses into a position of hyperflexion is widely used in equestrian sports. In our study, the hypothesis was tested that hyperflexion is an acute stressor for horses. Salivary cortisol concentrations, heart rate, heart rate variability (HRV) and superficial body temperature were determined in horses (n = 16) lunged on two subsequent days. The head and neck of the horse was fixed with side reins in a position allowing forward extension on day A and fixed in hyperflexion on day B. The order of treatments alternated between horses. In response to lunging, cortisol concentration increased (day A from 0.73 ± 0.06 to 1.41 ± 0.13 ng/ml, p < 0.001; day B from 0.68 ± 0.07 to 1.38 ± 0.13 ng/ml, p < 0.001) but did not differ between days A and B. Beat-to-beat (RR) interval decreased in response to lunging on both days. HRV variables standard deviation of RR interval (SDRR) and RMSSD (root mean square of successive RR differences) decreased (p < 0.001) but did not differ between days. In the cranial region of the neck, the difference between maximum and minimum temperature was increased in hyperflexion (p < 0.01). In conclusion, physiological parameters do not indicate an acute stress response to hyperflexion of the head alone in horses lunged at moderate speed and not touched with the whip. However, if hyperflexion is combined with active intervention of a rider, a stressful experience for the horse cannot be excluded.


Asunto(s)
Temperatura Corporal/fisiología , Frecuencia Cardíaca/fisiología , Caballos/fisiología , Hidrocortisona/sangre , Condicionamiento Físico Animal/fisiología , Crianza de Animales Domésticos , Animales , Femenino , Hidrocortisona/metabolismo , Masculino , Cuello , Postura , Estrés Fisiológico
2.
Vet J ; 195(3): 344-9, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22883927

RESUMEN

Identification of horses has traditionally been facilitated by hot iron branding, but the extent by which branding symbols and numbers can be identified has not been investigated. The local pathological changes induced by branding are also unknown. This study analysed the readability of branding symbols and histomorphological alterations at the branding sites. A total of 248 horses in an equestrian championship were available for identification of symbols and numbers. A further 28 horses, euthanased for other reasons, provided histological examination of the branding site. All except one horse had evidence of histological changes at the brand site, including epidermal hyperplasia, increase of dermal collagenous fibrous tissue and loss of adnexal structures. In two foals, an ulcerative to necrotizing dermatitis was observed and interpreted as a complication of recent branding lesions. Despite the fact that hot iron branding caused lesions compatible with third degree thermal injury, it did not allow unambiguous identification of a large proportion of older horses. While the breed-specific symbol was consistently identified by three independent investigators in 84% of the horses, the double-digit branding number was read correctly by all three investigators in less than 40%. In conclusion, hot iron branding in horses causes lesions compatible with third degree thermal injury but does not always allow identification of horses.


Asunto(s)
Sistemas de Identificación Animal/veterinaria , Quemaduras/veterinaria , Animales , Femenino , Alemania , Caballos , Masculino
3.
Vet J ; 191(2): 171-5, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21917490

RESUMEN

Branding is the traditional and well-established method used to mark horses, but recently microchip transponders for implantation have become available. In this study, behaviour, physiological stress variables and skin temperature in foals were determined in response to hot-iron branding (n=7) and microchip implantation (n=7). Salivary cortisol concentrations increased in response to branding (1.8 ± 0.2 ng/mL) and microchip implantation (1.4 ± 0.1ng/mL), but cortisol release over time did not differ. In response to both manipulations there was a transient increase in heart rate (P<0.001) and heart rate variability (P<0.01). Branding and microchip implantation induced a comparable aversive behaviour (branding, score 3.86 ± 0.85; microchip, score 4.00 ± 0.82). Both techniques thus caused similar physiological and behavioural changes indicative of stress. Acutely, implantation of a microchip was as stressful as branding in foals. Branding caused a necrotising skin burn lasting at least 7 days. Moreover branding, but not microchip implantation (P<0.001), was accompanied by a generalized increase in skin temperature which was comparable to low degree post-burn hypermetabolism in humans.


Asunto(s)
Sistemas de Identificación Animal/veterinaria , Conducta Animal/fisiología , Quemaduras/veterinaria , Caballos/fisiología , Dolor/veterinaria , Animales , Quemaduras/fisiopatología , Femenino , Frecuencia Cardíaca , Caballos/lesiones , Hidrocortisona/metabolismo , Masculino , Saliva/metabolismo , Estrés Fisiológico
4.
Domest Anim Endocrinol ; 38(3): 179-89, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19962266

RESUMEN

It is widely accepted that transport is stressful for horses, but only a few studies are available involving horses that are transported regularly and are accustomed to transport. We determined salivary cortisol immunoreactivity (IR), fecal cortisol metabolites, beat-to-beat (RR) interval, and heart rate variability (HRV) in transport-experienced horses (N=7) in response to a 2-d outbound road transport over 1370 km and 2-d return transport 8 d later. Salivary cortisol IR was low until 60 min before transport but had increased (P<0.05) 30 min before loading. Transport caused a further marked increase (P<0.001), but the response tended to decrease with each day of transport. Concentrations of fecal cortisol metabolites increased on the second day of both outbound and return transports and reached a maximum the following day (P<0.001). During the first 90 min on Day 1 of outbound transport, mean RR interval decreased (P<0.001). Standard deviations of RR interval (SDRR) decreased transiently (P<0.01). The root mean square of successive RR differences (RMSSD) decreased at the beginning of the outbound and return transports (P<0.01), reflecting reduced parasympathetic tone. On the first day of both outbound and return transports, a transient rise in geometric HRV variable standard deviation 2 (SD2) occurred (P<0.01), indicating increased sympathetic activity. In conclusion, transport of experienced horses leads to increased cortisol release and changes in heart rate and HRV, which is indicative of stress. The degree of these changes tended to be most pronounced on the first day of both outbound and return transport.


Asunto(s)
Frecuencia Cardíaca , Caballos , Hidrocortisona , Deportes , Estrés Fisiológico/fisiología , Animales , Electrocardiografía , Heces/química , Frecuencia Cardíaca/fisiología , Sistema Nervioso Parasimpático/fisiología , Saliva/metabolismo , Sistema Nervioso Simpático/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda