Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
J Environ Manage ; 301: 113900, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34638041

RESUMEN

This paper introduces a new framework to evaluate the resilience of lakes under climatic and anthropogenic droughts. The proposed hierarchical structure of criteria for assessing lake's resilience has four levels. The first level includes several indices such as long-term resilience, reliability, and implementation cost. In the second to fourth levels, four main resilience-based criteria (i.e. robustness, resourcefulness, redundancy, and rapidity) and some qualitative and quantitative sub-criteria are defined considering the factors affecting the ecological condition of lakes. To quantify the time series of the sub-criteria, a coupled SWAT-MODSIM-based simulation model has been applied. Also, the values of criteria and sub-criteria have been aggregated using the Evidential Reasoning (ER) approach. After estimating the annual resilience time series, three resilience indices, namely the recovery time (Tr), loss of resilience (LOR), and final resilience (Resf), have been calculated. The normalized values of these indices and reliability criteria have been aggregated to evaluate the overall performance of lake restoration scenarios. To show the applicability of the proposed methodology, the Zarrinehrud river basin and Lake Urmia have been selected as the case study. As one of the largest hypersaline lakes globally, Lake Urmia suffers from drastic changes in its water body and a high level of salinization. Also, the Zarrinehrud river basin, located in the southeastern of Urmia Lake, is the most significant sub-basin of the lake and is responsible for supplying 41% of the total annual inflow of the lake. The restoration scenarios of Lake Urmia have been assessed from 2019 to 2049. Eventually, the most effective scenario, which has an average overall performance of 0.72, the implementation cost of 17.1 million dollars, and the uncertainty band of 0.05, has been selected.


Asunto(s)
Sequías , Lagos , Monitoreo del Ambiente , Reproducibilidad de los Resultados , Ríos , Incertidumbre
2.
J Environ Manage ; 284: 112025, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33556832

RESUMEN

This paper introduces a new methodology for quantifying the total resilience of water resources management scenarios. The climate change impacts on water supply and demand have been investigated using a calibrated soil and water assessment tool (SWAT) and a MODSIM water allocation model. Several criteria have been defined to measure five aspects of water resources systems resilience. The first aspect defines resilience as system strength against crossing a performance threshold (reliability). In the second aspect, if the system crosses the performance threshold, the recovery rate of the system after a disturbance is evaluated. The violation from the performance threshold has been measured as the third aspect (vulnerability), which considers the failure's severity. The fourth aspect is the resilience under extreme events with unknown occurrence probability, which includes four sub-criteria, namely rapidity, robustness, resourcefulness, and redundancy (4 R). Finally, the fifth criterion considers the ecological condition of the system (ecological index). To compare water resources management scenarios (alternatives), an analytical evidential reasoning-based (ER) approach has been used. To show the applicability of the proposed methodology, it has been applied to the Zarrinehrud river basin, which is the leading water supplier of Lake Urmia in Iran. As one of the largest saline lakes globally, this lake has been suffering from drastic desertification and salinization in the past two decades. The grade-based results of the performance criteria are synthesized into a grade-based total resilience criterion to facilitate the comparison of water resources management scenarios. It is shown that a scenario which results in 40% reduction in agricultural water demand until 2023 has the highest resilience and an acceptable construction and operational cost.


Asunto(s)
Ríos , Recursos Hídricos , Irán , Reproducibilidad de los Resultados , Agua
3.
Sci Total Environ ; 902: 165986, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536587

RESUMEN

This paper proposes a new framework for evaluating water and environmental resources carrying capacity (WERCC) based on the concept of resilience under uncertainty. First, several quantitative and qualitative criteria based on the seven principles of resilience and the Pressure-Support-State (PSS) framework are defined to incorporate the positive and negative impacts of human interventions and natural factors on water resources and the environment. The resilience principles include redundancy and diversity, managing connectivity, managing slow variables and their feedbacks, fostering complex adaptive system (CAS) thinking, encouraging learning, broadening participation, and promoting polycentric governance. After evaluating the values of the criteria and sub-criteria using a two-point evidential reasoning (TPER) approach and considering the existing uncertainties, the monthly time series of WERCC with uncertainty bands are calculated. The proposed methodology is then used to evaluate the WERCC in the Zarrinehrud river basin in Iran for a given historical period (1991-2012), and the period of 2020 to 2049 under different climate change scenarios. The results of this analysis demonstrate the inadequacy of the WERCC during the historical period and indicate that the continuation of the existing trend (base scenario, MSC0) will cause many environmental issues. Hence, several water and environmental resources management (WERM) scenarios are proposed to enhance the WERCC. These scenarios are evaluated using a multi-agent-multi-criteria decision-making method to identify the preferable WERM scenario (MSC12356). This scenario, which encompasses various projects (e.g., development and enhancement of water transfer networks and upgrading cultivation methods), improves the average value of the WERCC by 26 %. The results of the proposed methodology are compared with those of a traditional decision-making method, which considers three criteria of average WERCC, the pressure-support index, and the implementation cost. The results demonstrate that the multi-agent-multi-criteria decision-making approach provides a more cost-effective management scenario, with 30 % less cost, leading to only 3 % less carrying capacity.

4.
MethodsX ; 10: 102130, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077892

RESUMEN

In this paper, a methodology is presented for managing hydrological ecosystem services by taking into account the hierarchy of stakeholders involved in the decision-making process. With this in mind, a water allocation model is first used for allocating water resources to demands. Then, several ecosystem services (ESs)-based criteria are defined to evaluate hydrological ESs of water resources management policies. A set of water and environmental resources management strategies (alternatives) are defined for decision-makers, and several drought management strategies are determined to decrease the area of key crops and water demands of agricultural nodes. To model a multi-agent multi-criteria decision-making problem for managing hydrological ESs, three main steps are considered as follows:•Different ES-based criteria (i.e., economic profit, NPP, and ecological index) are defined, and their grade-based values are estimated.•Several strategies are defined for stakeholders at different levels.•A recursive evidential reasoning (ER) approach, which considers a hierarchical structure for decision-makers and a leader-follower game, is used to select the best strategy for each decision-maker.The applicability and efficiency of the methodology are illustrated by applying it to a real-world case study. The methodology is general and can be easily applied to other study areas.

5.
Sci Total Environ ; 864: 161060, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36565879

RESUMEN

This paper introduces a hierarchical multi-agent decision-making framework for Water and Environmental Resources Management Scenarios (WERMSs) under uncertain conditions of climate change and complex agent characteristics. The proposed framework utilizes three Game Theory concepts: the Stackelberg, Bayesian (Incomplete), and Imperfect games, in order to incorporate the hierarchical structure of the agents and the temporal distribution and accuracy of information between them. The methodology is applied to the Zarrinehroud River Basin (ZRB), the largest hypersaline lake in the Middle East. The area of the lake has decreased dramatically (about 50 %) during past decades causing various environmental, social, and economic problems. WERMSs were evaluated using qualitative and quantitative hydrological, social, economic, and ecological criteria under different climate change scenarios. The proposed methodology provides equilibriums in the decision-making process while considering different climate change scenarios. Applying the selected WERM results in an accumulated value of 2995 million m3 of water flow to the lake until 2049. Moreover, the lake's elevation reaches a new level of 1272.6 m above sea level at the end of the following 30 years, compared to the elevation of 1271.3 at the beginning of the evaluation period.

6.
Sci Total Environ ; 806(Pt 3): 150702, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-34600983

RESUMEN

This paper presents a new framework for evaluating the sustainability of basin-wide ecosystem services (ESs) including provisioning, regulating, supporting, and cultural services. In this framework, the Soil and Water Assessment Tool (SWAT) and MODSIM1 models and experts' opinions are used to evaluate the ESs. To show the applicability of the proposed framework, it is applied to the Zarrinehrud river basin under three different climate change (CC) scenarios (i.e., RCP 4.5, 6.0, and 8.5) for two different time horizons (i.e., 2020-2049 and 2020-2098). This basin is the main water supplier of the largest hypersaline lake in the Middle East, Lake Urmia. In the next step, 128 water resources management (WRM) scenarios are taken into account considering the projects defined by Urmia Lake Restoration National Committee (ULRNC). All ecosystem services are evaluated considering all WRM and CC scenarios. Finally, a group COPRAS-based decision-making approach is used to determine the best WRM scenario under climate change. The results show that WRM scenario 128 is the best scenario for improving ecosystem services in the study area. This scenario includes some projects such as allocating water to the lake from new resources, rehabilitating irrigation and draining networks, and improving cropping patterns.


Asunto(s)
Cambio Climático , Ríos , Ecosistema , Lagos , Recursos Hídricos
7.
Sci Total Environ ; 751: 141759, 2021 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-32892079

RESUMEN

This paper introduces a new methodology for evaluating water resources management scenarios considering different aspects of their hydrological ecosystem services. The temporal variations of supplied water to different demands are assessed as provisioning hydrological ecosystem services. Then, three agricultural drought management policies have been defined for each water supply-demand alternative to reduce the irrigation water and cultivated area of the agricultural demand nodes during droughts. In addition to the net primary productivity criterion (NPP) and economic profit, the ecological condition of the system has been evaluated as an ecosystem services-based criterion. To prioritize and select the best water resources management (WRM) scenario(s), a game theory-based hierarchical evidential reasoning (ER) technique with multiple decision-makers has been used. The proposed methodology has been applied to the Urmia Lake basin, which is the largest saline lake in the Middle East. The grade-based values of the criteria have been used to compare the WRM scenarios. The results show that a scenario that includes supplying 100% of the lake's water demand has the highest priority. This scenario also suggests reducing the cultivated area of dominant crops and using deficit irrigation practices.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda