Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Cell ; 179(1): 193-204.e14, 2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31495574

RESUMEN

Numerous interventions are in clinical development for respiratory syncytial virus (RSV) infection, including small molecules that target viral transcription and replication. These processes are catalyzed by a complex comprising the RNA-dependent RNA polymerase (L) and the tetrameric phosphoprotein (P). RSV P recruits multiple proteins to the polymerase complex and, with the exception of its oligomerization domain, is thought to be intrinsically disordered. Despite their critical roles in RSV transcription and replication, structures of L and P have remained elusive. Here, we describe the 3.2-Å cryo-EM structure of RSV L bound to tetrameric P. The structure reveals a striking tentacular arrangement of P, with each of the four monomers adopting a distinct conformation. The structure also rationalizes inhibitor escape mutants and mutations observed in live-attenuated vaccine candidates. These results provide a framework for determining the molecular underpinnings of RSV replication and transcription and should facilitate the design of effective RSV inhibitors.


Asunto(s)
Fosfoproteínas/ultraestructura , ARN Polimerasa Dependiente del ARN/ultraestructura , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitial Respiratorio Humano/enzimología , Proteínas Virales/ultraestructura , Acetatos/química , Animales , Antivirales/química , Antivirales/uso terapéutico , Dominio Catalítico , Microscopía por Crioelectrón , Desoxicitidina/análogos & derivados , Desoxicitidina/química , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Conformación Proteica en Hélice alfa , Dominios y Motivos de Interacción de Proteínas , Quinolinas/química , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , Infecciones por Virus Sincitial Respiratorio/tratamiento farmacológico , Vacunas contra Virus Sincitial Respiratorio/química , Células Sf9 , Spodoptera , Proteínas Virales/química , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
2.
Antimicrob Agents Chemother ; 59(12): 7504-16, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26392512

RESUMEN

Norovirus (NoV) is a positive-sense single-stranded RNA virus that causes acute gastroenteritis and is responsible for 200,000 deaths per year worldwide. No effective vaccine or treatment is available. Recent studies have shown that the nucleoside analogs favipiravir (T-705) and 2'-C-methyl-cytidine (2CM-C) inhibit NoV replication in vitro and in animal models, but their precise mechanism of action is unknown. We evaluated the molecular interactions between nucleoside triphosphates and NoV RNA-dependent RNA polymerase (NoVpol), the enzyme responsible for replication and transcription of NoV genomic RNA. We found that T-705 ribonucleoside triphosphate (RTP) and 2CM-C triphosphate (2CM-CTP) equally inhibited human and mouse NoVpol activities at concentrations resulting in 50% of maximum inhibition (IC50s) in the low micromolar range. 2CM-CTP inhibited the viral polymerases by competing directly with natural CTP during primer elongation, whereas T-705 RTP competed mostly with ATP and GTP at the initiation and elongation steps. Incorporation of 2CM-CTP into viral RNA blocked subsequent RNA synthesis, whereas T-705 RTP did not cause immediate chain termination of NoVpol. 2CM-CTP and T-705 RTP displayed low levels of enzyme selectivity, as they were both recognized as substrates by human mitochondrial RNA polymerase. The level of discrimination by the human enzyme was increased with a novel analog of T-705 RTP containing a 2'-C-methyl substitution. Collectively, our data suggest that 2CM-C inhibits replication of NoV by acting as a classic chain terminator, while T-705 may inhibit the virus by multiple mechanisms of action. Understanding the precise mechanism of action of anti-NoV compounds could provide a rational basis for optimizing their inhibition potencies and selectivities.


Asunto(s)
Amidas/farmacología , Antivirales/farmacología , Citidina/análogos & derivados , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , Pirazinas/farmacología , Ribonucleótidos/farmacología , Proteínas Virales/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Citidina/farmacología , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Viral de la Expresión Génica , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Especificidad del Huésped , Humanos , Cinética , Ratones , Norovirus/efectos de los fármacos , Norovirus/enzimología , Norovirus/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transcripción Genética/efectos de los fármacos , Proteínas Virales/genética , Proteínas Virales/metabolismo , Replicación Viral/efectos de los fármacos
3.
Commun Biol ; 6(1): 1074, 2023 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-37865687

RESUMEN

The respiratory syncytial virus polymerase complex, consisting of the polymerase (L) and phosphoprotein (P), catalyzes nucleotide polymerization, cap addition, and cap methylation via the RNA dependent RNA polymerase, capping, and Methyltransferase domains on L. Several nucleoside and non-nucleoside inhibitors have been reported to inhibit this polymerase complex, but the structural details of the exact inhibitor-polymerase interactions have been lacking. Here, we report a non-nucleoside inhibitor JNJ-8003 with sub-nanomolar inhibition potency in both antiviral and polymerase assays. Our 2.9 Å resolution cryo-EM structure revealed that JNJ-8003 binds to an induced-fit pocket on the capping domain, with multiple interactions consistent with its tight binding and resistance mutation profile. The minigenome and gel-based de novo RNA synthesis and primer extension assays demonstrated that JNJ-8003 inhibited nucleotide polymerization at the early stages of RNA transcription and replication. Our results support that JNJ-8003 binding modulates a functional interplay between the capping and RdRp domains, and this molecular insight could accelerate the design of broad-spectrum antiviral drugs.


Asunto(s)
Virus Sincitial Respiratorio Humano , ARN Polimerasa Dependiente del ARN/química , Unión Proteica , ARN/metabolismo , Nucleótidos/metabolismo
4.
Antiviral Res ; 143: 151-161, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28412183

RESUMEN

Recent cases of severe toxicity during clinical trials have been associated with antiviral ribonucleoside analogs (e.g. INX-08189 and balapiravir). Some have hypothesized that the active metabolites of toxic ribonucleoside analogs, the triphosphate forms, inadvertently target human mitochondrial RNA polymerase (POLRMT), thus inhibiting mitochondrial RNA transcription and protein synthesis. Others have proposed that the prodrug moiety released from the ribonucleoside analogs might instead cause toxicity. Here, we report the mitochondrial effects of several clinically relevant and structurally diverse ribonucleoside analogs including NITD-008, T-705 (favipiravir), R1479 (parent nucleoside of balapiravir), PSI-7851 (sofosbuvir), and INX-08189 (BMS-986094). We found that efficient substrates and chain terminators of POLRMT, such as the nucleoside triphosphate forms of R1479, NITD-008, and INX-08189, are likely to cause mitochondrial toxicity in cells, while weaker chain terminators and inhibitors of POLRMT such as T-705 ribonucleoside triphosphate do not elicit strong in vitro mitochondrial effects. Within a fixed 3'-deoxy or 2'-C-methyl ribose scaffold, changing the base moiety of nucleotides did not strongly affect their inhibition constant (Ki) against POLRMT. By swapping the nucleoside and prodrug moieties of PSI-7851 and INX-08189, we demonstrated that the cell-based toxicity of INX-08189 is mainly caused by the nucleoside component of the molecule. Taken together, these results show that diverse 2' or 4' mono-substituted ribonucleoside scaffolds cause mitochondrial toxicity. Given the unpredictable structure-activity relationship of this ribonucleoside liability, we propose a rapid and systematic in vitro screen combining cell-based and biochemical assays to identify the early potential for mitochondrial toxicity.


Asunto(s)
Antivirales/toxicidad , Mitocondrias/efectos de los fármacos , Ribonucleósidos/química , Ribonucleósidos/toxicidad , Adenosina/análogos & derivados , Amidas/toxicidad , Línea Celular/efectos de los fármacos , Citidina/análogos & derivados , Citidina/toxicidad , ARN Polimerasas Dirigidas por ADN/efectos de los fármacos , Guanosina Monofosfato/análogos & derivados , Guanosina Monofosfato/toxicidad , Humanos , Concentración 50 Inhibidora , Proteínas Mitocondriales/metabolismo , Nucleósidos/toxicidad , Profármacos/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Pirazinas/toxicidad , ARN/metabolismo , ARN Mitocondrial , Sofosbuvir/toxicidad , Relación Estructura-Actividad , Sitio de Iniciación de la Transcripción/efectos de los fármacos , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda