RESUMEN
Thermal nociception involves the transmission of temperature-related noxious information from the periphery to the CNS and is a heritable trait that could predict transition to persistent pain. Rodent forward genetics complement human studies by controlling genetic complexity and environmental factors, analysis of end point tissue, and validation of variants on appropriate genetic backgrounds. Reduced complexity crosses between nearly identical inbred substrains with robust trait differences can greatly facilitate unbiased discovery of novel genes and variants. We found BALB/cByJ mice showed enhanced sensitivity on the 53.5°C hot plate and mechanical stimulation in the von Frey test compared to BALB/cJ mice and replicated decreased gross brain weight in BALB/cByJ versus BALB/cJ. We then identified a quantitative trait locus (QTL) on chromosome 13 for hot plate sensitivity (LOD = 10.7; p < 0.001; peak = 56 Mb) and a QTL for brain weight on chromosome 5 (LOD = 8.7; p < 0.001). Expression QTL mapping of brain tissues identified H2afy (56.07 Mb) as the top transcript with the strongest association at the hot plate locus (FDR = 0.0002) and spliceome analysis identified differential exon usage within H2afy associated with the same locus. Whole brain proteomics further supported decreased H2AFY expression could underlie enhanced hot plate sensitivity, and identified ACADS as a candidate for reduced brain weight. To summarize, a BALB/c reduced complexity cross combined with multiple-omics approaches facilitated identification of candidate genes underlying thermal nociception and brain weight. These substrains provide a powerful, reciprocal platform for future validation of candidate variants.
Asunto(s)
Nocicepción , Sitios de Carácter Cuantitativo , Animales , Encéfalo , Mapeo Cromosómico , Ratones , Ratones Endogámicos BALB C , Sitios de Carácter Cuantitativo/genéticaRESUMEN
Understanding the pharmacogenomics of opioid metabolism and behavior is vital to therapeutic success, as mutations can dramatically alter therapeutic efficacy and addiction liability. We found robust, sex-dependent BALB/c substrain differences in oxycodone behaviors and whole brain concentration of oxycodone metabolites. BALB/cJ females showed robust state-dependent oxycodone reward learning as measured via conditioned place preference when compared with the closely related BALB/cByJ substrain. Accordingly, BALB/cJ females also showed a robust increase in brain concentration of the inactive metabolite noroxycodone and the active metabolite oxymorphone compared with BALB/cByJ mice. Oxymorphone is a highly potent, full agonist at the mu opioid receptor that could enhance drug-induced interoception and state-dependent oxycodone reward learning. Quantitative trait locus (QTL) mapping in a BALB/c F2 reduced complexity cross revealed one major QTL on chromosome 15 underlying brain oxymorphone concentration that explained 32% of the female variance. BALB/cJ and BALB/cByJ differ by fewer than 10,000 variants, which can greatly facilitate candidate gene/variant identification. Hippocampal and striatal cis-expression QTL (eQTL) and exon-level eQTL analysis identified Zhx2, a candidate gene coding for a transcriptional repressor with a private BALB/cJ retroviral insertion that reduces Zhx2 expression and sex-dependent dysregulation of cytochrome P450 enzymes. Whole brain proteomics corroborated the Zhx2 eQTL and identified upregulated CYP2D11 that could increase brain oxymorphone in BALB/cJ females. To summarize, Zhx2 is a highly promising candidate gene underlying brain oxycodone metabolite levels. Future studies will validate Zhx2 and its site of action using reciprocal gene editing and tissue-specific viral manipulations in BALB/c substrains. SIGNIFICANCE STATEMENT: Our findings show that genetic variation can result in sex-specific alterations in whole brain concentration of a bioactive opioid metabolite after oxycodone administration, reinforcing the need for sex as a biological factor in pharmacogenomic studies. The cooccurrence of female-specific increased oxymorphone and state-dependent reward learning suggests that this minor yet potent and efficacious metabolite of oxycodone could increase opioid interoception and drug-cue associative learning of opioid reward, which has implications for cue-induced relapse of drug-seeking behavior and for precision pharmacogenetics.
Asunto(s)
Encéfalo , Proteínas de Homeodominio , Oxicodona , Oximorfona , Analgésicos Opioides/farmacología , Animales , Encéfalo/efectos de los fármacos , Femenino , Proteínas de Homeodominio/genética , Masculino , Ratones , Ratones Endogámicos BALB C , Oxicodona/farmacología , Oximorfona/farmacología , RecompensaRESUMEN
Individual variation in the addiction liability of amphetamines has a heritable genetic component. We previously identified Hnrnph1 (heterogeneous nuclear ribonucleoprotein H1) as a quantitative trait gene underlying decreased methamphetamine-induced locomotor activity in mice. Here, we showed that mice (both females and males) with a heterozygous mutation in the first coding exon of Hnrnph1 (H1+/-) showed reduced methamphetamine reinforcement and intake and dose-dependent changes in methamphetamine reward as measured via conditioned place preference. Furthermore, H1+/- mice showed a robust decrease in methamphetamine-induced dopamine release in the NAc with no change in baseline extracellular dopamine, striatal whole-tissue dopamine, dopamine transporter protein, dopamine uptake, or striatal methamphetamine and amphetamine metabolite levels. Immunohistochemical and immunoblot staining of midbrain dopaminergic neurons and their forebrain projections for TH did not reveal any major changes in staining intensity, cell number, or forebrain puncta counts. Surprisingly, there was a twofold increase in hnRNP H protein in the striatal synaptosome of H1+/- mice with no change in whole-tissue levels. To gain insight into the mechanisms linking increased synaptic hnRNP H with decreased methamphetamine-induced dopamine release and behaviors, synaptosomal proteomic analysis identified an increased baseline abundance of several mitochondrial complex I and V proteins that rapidly decreased at 30 min after methamphetamine administration in H1+/- mice. In contrast, the much lower level of basal synaptosomal mitochondrial proteins in WT mice showed a rapid increase. We conclude that H1+/- decreases methamphetamine-induced dopamine release, reward, and reinforcement and induces dynamic changes in basal and methamphetamine-induced synaptic mitochondrial function.SIGNIFICANCE STATEMENT Methamphetamine dependence is a significant public health concern with no FDA-approved treatment. We discovered a role for the RNA binding protein hnRNP H in methamphetamine reward and reinforcement. Hnrnph1 mutation also blunted methamphetamine-induced dopamine release in the NAc, a key neurochemical event contributing to methamphetamine addiction liability. Finally, Hnrnph1 mutants showed a marked increase in basal level of synaptosomal hnRNP H and mitochondrial proteins that decreased in response to methamphetamine, whereas WT mice showed a methamphetamine-induced increase in synaptosomal mitochondrial proteins. Thus, we identified a potential role for hnRNP H in basal and dynamic mitochondrial function that informs methamphetamine-induced cellular adaptations associated with reduced addiction liability.
Asunto(s)
Dopamina/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas/genética , Metanfetamina/farmacología , Mitocondrias/efectos de los fármacos , Refuerzo en Psicología , Recompensa , Sinaptosomas/metabolismo , Animales , Ansiedad/fisiopatología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Neuronas Dopaminérgicas/efectos de los fármacos , Exones/genética , Conducta Exploratoria/efectos de los fármacos , Femenino , Heterocigoto , Masculino , Mesencéfalo/efectos de los fármacos , Mesencéfalo/metabolismo , Metanfetamina/toxicidad , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Mutación , Reflejo de Sobresalto/efectos de los fármacos , Prueba de Desempeño de Rotación con Aceleración Constante , Trastornos Relacionados con Sustancias/fisiopatologíaRESUMEN
We previously identified a 210 kb region on chromosome 11 (50.37-50.58 Mb, mm10) containing two protein-coding genes (Hnrnph1, Rufy1) that was necessary for reduced methamphetamine-induced locomotor activity in C57BL/6J congenic mice harboring DBA/2J polymorphisms. Gene editing of a small deletion in the first coding exon supported Hnrnph1 as a quantitative trait gene. We have since shown that Hnrnph1 mutants also exhibit reduced methamphetamine-induced reward, reinforcement, and dopamine release. However, the quantitative trait variants (QTVs) that modulate Hnrnph1 function at the molecular level are not known. Nine single nucleotide polymorphisms and seven indels distinguish C57BL/6J from DBA/2J within Hnrnph1, including four variants within the 5' untranslated region (UTR). Here, we show that a 114 kb introgressed region containing Hnrnph1 and Rufy1 was sufficient to cause a decrease in MA-induced locomotor activity. Gene-level transcriptome analysis of striatal tissue from 114 kb congenics vs Hnrnph1 mutants identified a nearly perfect correlation of fold-change in expression for those differentially expressed genes that were common to both mouse lines, indicating functionally similar effects on the transcriptome and behavior. Exon-level analysis (including noncoding exons) revealed decreased 5' UTR usage of Hnrnph1 and immunoblot analysis identified a corresponding decrease in hnRNP H protein in 114 kb congenic mice. Molecular cloning of the Hnrnph1 5' UTR containing all four variants (but none of them individually) upstream of a reporter induced a decrease in reporter signal in both HEK293 and N2a cells, thus, identifying a set of QTVs underlying molecular regulation of Hnrnph1.
Asunto(s)
Regiones no Traducidas 5' , Resistencia a Medicamentos/genética , Exones , Ribonucleoproteínas Nucleares Heterogéneas/genética , Metanfetamina/farmacología , Actividad Motora , Polimorfismo Genético , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , ARN MensajeroRESUMEN
Binge eating is a heritable symptom of eating disorders with an unknown genetic etiology. Rodent models for binge-like eating (BLE) of palatable food permit the study of genetic and biological mechanisms. We previously genetically mapped a coding mutation in Cyfip2 associated with increased BLE of sweetened palatable food in the C57BL/6NJ versus C57BL/6J substrain. The increase in BLE in C57BL/6NJ mice was associated with a decrease in transcription of genes enriched for myelination in the striatum. Here, we tested the hypothesis that decreasing myelin levels with the demyelinating agent cuprizone would enhance BLE. Mice were treated with a 0.3% cuprizone home cage diet for two weeks. Cuprizone induced similar weight loss in both substrains and sexes that recovered within 48 h after removal of cuprizone. Following a three-week recovery period, mice were trained for BLE in an intermittent, limited access procedure. Surprisingly, cuprizone significantly reduced BLE in male but not female C57BL/6NJ mice while having no effect in C57BL/6J mice. Cuprizone also reduced myelin basic protein (MBP) at seven weeks post-cuprizone removal while having no effect on myelin-associated glycoprotein at this time point. C57BL/6NJ mice also showed less MBP than C57BL/6J mice. There were no statistical interactions of Treatment with Sex on MBP levels, indicating that differences in MBP reduction are unlikely to account for sex differences in BLE. To summarize, cuprizone induced an unexpected, significant reduction in BLE in C57BL/6NJ males, which could indicate genotype-dependent sex differences in the biological mechanisms of BLE.
Asunto(s)
Trastorno por Atracón/tratamiento farmacológico , Cuprizona/farmacología , Vaina de Mielina/efectos de los fármacos , Proteínas del Tejido Nervioso/farmacología , Caracteres Sexuales , Animales , Trastorno por Atracón/genética , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Sensitivity to the subjective reinforcing properties of opioids has a genetic component and can predict addiction liability of opioid compounds. We previously identified Zhx2 as a candidate gene underlying increased brain concentration of the oxycodone (OXY) metabolite oxymorphone (OMOR) in BALB/cJ (J) versus BALB/cByJ (By) females that could increase OXY state-dependent reward. A large structural intronic variant is associated with a robust reduction of Zhx2 expression in J mice, which we hypothesized enhances OMOR levels and OXY addiction-like behaviors. We tested this hypothesis by restoring the Zhx2 loss-of-function in Js (MVKO) and modeling the loss-of-function variant through knocking out the Zhx2 coding exon (E3KO) in Bys and assessing brain OXY metabolite levels and behavior. Consistent with our hypothesis, Zhx2 E3KO females showed an increase in brain OMOR levels and OXY-induced locomotor activity. However, contrary to our hypothesis, state-dependent expression of OXY-CPP was decreased in E3KO females and increased in E3KO males. We also overexpressed Zhx2 in the livers and brains of Js and observed Zhx2 overexpression in select brain regions that was associated with reduced OXY state-dependent learning. Integrative transcriptomic and proteomic analysis of E3KO mice identified astrocyte function, cell adhesion, extracellular matrix properties, and endothelial cell functions as pathways influencing brain OXY metabolite concentration and behavior. These results support Zhx2 as a quantitative trait gene underlying brain OMOR concentration that is associated with changes in OXY behavior and implicate potential quantitative trait mechanisms that together inform our overall understanding of Zhx2 in brain function.
RESUMEN
Rationale: Opioid use during pregnancy can lead to negative infant health outcomes, including neonatal opioid withdrawal syndrome (NOWS). NOWS comprises gastrointestinal, autonomic nervous system, and neurological dysfunction that manifest during spontaneous withdrawal. Variability in NOWS severity necessitates a more individualized treatment approach. Ultrasonic vocalizations (USVs) in neonatal mice are emitted in isolation as a stress response and are increased during opioid withdrawal, thus modeling a negative affective state that can be utilized to test new treatments. Objectives: We sought to identify the behavioral and USV profile, brainstem transcriptomic adaptations, and role of kappa opioid receptors in USVs during neonatal opioid withdrawal. Methods: We employed a third trimester-approximate opioid exposure model, where neonatal inbred FVB/NJ pups were injected twice-daily with morphine (10mg/kg, s.c.) or saline (0.9%, 20 ul/g, s.c.) from postnatal day(P) 1 to P14. This protocol induces reduced weight gain, hypothermia, thermal hyperalgesia, and increased USVs during spontaneous morphine withdrawal. Results: On P14, there were increased USV emissions and altered USV syllables during withdrawal, including an increase in Complex 3 syllables in FVB/NJ females (but not males). Brainstem bulk mRNA sequencing revealed an upregulation of the kappa opioid receptor (Oprk1), which contributes to withdrawal-induced dysphoria. The kappa opioid receptor (KOR) antagonist, nor-BNI (30 mg/kg, s.c.), significantly reduced USVs in FVB/NJ females, but not males during spontaneous morphine withdrawal. Furthermore, the KOR agonist, U50,488h (0.625 mg/kg, s.c.), was sufficient to increase USVs on P10 (both sexes) and P14 (females only) in FVB/NJ mice. Conclusions: We identified an elevated USV syllable, Complex 3, and a female-specific recruitment of the dynorphin/KOR system in increased USVs associated with neonatal opioid withdrawal severity.
RESUMEN
RATIONALE: Opioid use during pregnancy can lead to negative infant health outcomes, including neonatal opioid withdrawal syndrome (NOWS). NOWS comprises gastrointestinal, autonomic nervous system, and neurological dysfunction that manifest during spontaneous withdrawal. Variability in NOWS severity necessitates a more individualized treatment approach. Ultrasonic vocalizations (USVs) in neonatal mice are emitted in isolation as a stress response and are increased during opioid withdrawal, thus modeling a negative affective state that can be utilized to test new treatments. OBJECTIVES: We sought to identify the behavioral and USV profile, brainstem transcriptomic adaptations, and role of kappa opioid receptors in USVs during neonatal opioid withdrawal. METHODS: We employed a third trimester-approximate opioid exposure model, where neonatal inbred FVB/NJ pups were injected twice-daily with morphine (10mg/kg, s.c.) or saline (0.9%, 20 ul/g, s.c.) from postnatal day(P) 1 to P14. This protocol induces reduced weight gain, hypothermia, thermal hyperalgesia, and increased USVs during spontaneous morphine withdrawal. RESULTS: On P14, there were increased USV emissions and altered USV syllables during withdrawal, including an increase in Complex 3 syllables in FVB/NJ females (but not males). Brainstem bulk mRNA sequencing revealed an upregulation of the kappa opioid receptor (Oprk1), which contributes to withdrawal-induced dysphoria. The kappa opioid receptor (KOR) antagonist, nor-BNI (30 mg/kg, s.c.), significantly reduced USVs in FVB/NJ females, but not males during spontaneous morphine withdrawal. Furthermore, the KOR agonist, U50,488h (0.625 mg/kg, s.c.), was sufficient to increase USVs on P10 (both sexes) and P14 (females only) in FVB/NJ mice. CONCLUSIONS: We identified an elevated USV syllable, Complex 3, and a female-specific recruitment of the dynorphin/KOR system in increased USVs associated with neonatal opioid withdrawal severity.
RESUMEN
Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm. Narrow-sense heritability was estimated at 0.22-0.31, implicating suitability for genetic analysis. Quantitative trait locus (QTL) mapping in an F2 cross identified a chromosome 1 QTL explaining 7-12% of the variance in OXY locomotion and anxiety-like withdrawal in the elevated plus maze. A second QTL for EPM withdrawal behavior on chromosome 5 near Gabra2 (alpha-2 subunit of GABA-A receptor) explained 9% of the variance. To narrow the chromosome 1 locus, we generated recombinant lines spanning 163-181 Mb, captured the QTL for OXY locomotor traits and withdrawal, and fine-mapped a 2.45-Mb region (170.16-172.61 Mb). Transcriptome analysis identified five, localized striatal cis-eQTL transcripts and two were confirmed at the protein level (KCNJ9, ATP1A2). Kcnj9 codes for a potassium channel (GIRK3) that is a major effector of mu opioid receptor signaling. Atp1a2 codes for a subunit of a Na+/K+ ATPase enzyme that regulates neuronal excitability and shows functional adaptations following chronic opioid administration. To summarize, we identified two candidate genes underlying the physiological and behavioral properties of opioids, with direct preclinical relevance to investigators employing these widely used substrains and clinical relevance to human genetic studies of opioid use disorder.
RESUMEN
Prenatal opioid exposure is a major health concern in the United States, with the incidence of neonatal opioid withdrawal syndrome (NOWS) escalating in recent years. NOWS occurs upon cessation of in utero opioid exposure and is characterized by increased irritability, disrupted sleep patterns, high-pitched crying, and dysregulated feeding. The main pharmacological strategy for alleviating symptoms is treatment with replacement opioids. The neural mechanisms mediating NOWS and the long-term neurobehavioral effects are poorly understood. We used a third trimester-approximate model in which neonatal outbred pups (Carworth Farms White; CFW) were administered once-daily morphine (15 mg/kg, s.c.) from postnatal day (P) day 1 through P14 and were then assessed for behavioral and transcriptomic adaptations within the nucleus accumbens (NAc) on P15. We also investigated the long-term effects of perinatal morphine exposure on adult learning and reward sensitivity. We observed significant weight deficits, spontaneous thermal hyperalgesia, and altered ultrasonic vocalization (USV) profiles following repeated morphine and during spontaneous withdrawal. Transcriptome analysis of NAc from opioid-withdrawn P15 neonates via bulk mRNA sequencing identified an enrichment profile consistent with downregulation of myelin-associated transcripts. Despite the neonatal behavioral and molecular effects, there were no significant long-term effects of perinatal morphine exposure on adult spatial memory function in the Barnes Maze, emotional learning in fear conditioning, or in baseline or methamphetamine-potentiated reward sensitivity as measured via intracranial self-stimulation. Thus, the once daily third trimester-approximate exposure regimen, while inducing NOWS model traits and significant transcriptomic effects in neonates, had no significant long-term effects on adult behaviors. HIGHLIGHTS: We replicated some NOWS model traits via 1x-daily morphine (P1-P14).We found a downregulation of myelination genes in nucleus accumbens on P15.There were no effects on learning/memory or reward sensitivity in adults.
RESUMEN
Prenatal opioid exposure is a major health concern in the United States, with the incidence of neonatal opioid withdrawal syndrome (NOWS) escalating in recent years. NOWS occurs upon cessation of in utero opioid exposure and is characterized by increased irritability, disrupted sleep patterns, high-pitched crying, and dysregulated feeding. The main pharmacological strategy for alleviating symptoms is treatment with replacement opioids. The neural mechanisms mediating NOWS and the long-term neurobehavioral effects are poorly understood. We used a third trimester-approximate model in which neonatal outbred pups (Carworth Farms White; CFW) were administered once-daily morphine (15 mg/kg, s.c.) from postnatal day (P) day 1 through P14 and were then assessed for behavioral and transcriptomic adaptations within the nucleus accumbens (NAc) on P15. We also investigated the long-term effects of perinatal morphine exposure on adult learning and reward sensitivity. We observed significant weight deficits, spontaneous thermal hyperalgesia, and altered ultrasonic vocalization (USV) profiles following repeated morphine and during spontaneous withdrawal. Transcriptome analysis of NAc from opioid-withdrawn P15 neonates via bulk mRNA sequencing identified an enrichment profile consistent with downregulation of myelin-associated transcripts. Despite the neonatal behavioral and molecular effects, there were no significant long-term effects of perinatal morphine exposure on adult spatial memory function in the Barnes Maze, emotional learning in fear conditioning, or in baseline or methamphetamine-potentiated reward sensitivity as measured via intracranial self-stimulation. Thus, the once daily third trimester-approximate exposure regimen, while inducing NOWS model traits and significant transcriptomic effects in neonates, had no significant long-term effects on adult behaviors.
Asunto(s)
Síndrome de Abstinencia Neonatal , Trastornos Relacionados con Opioides , Síndrome de Abstinencia a Sustancias , Embarazo , Femenino , Animales , Ratones , Analgésicos Opioides/farmacología , Núcleo Accumbens , Vaina de Mielina , Síndrome de Abstinencia a Sustancias/metabolismo , Narcóticos/farmacología , Morfina/farmacología , Síndrome de Abstinencia Neonatal/tratamiento farmacológico , Síndrome de Abstinencia Neonatal/epidemiología , Síndrome de Abstinencia Neonatal/etiología , Expresión Génica , Trastornos Relacionados con Opioides/metabolismoRESUMEN
Binge eating disorder (BED) is defined as chronic episodes of consuming large amounts of food in less than 2 h. Binge eating disorder poses a serious public health problem, as it increases the risk of obesity, type II diabetes, and heart disease. Binge eating is a highly heritable trait; however, its genetic basis remains largely unexplored. We employed a mouse model for binge eating that focused on identifying heritable differences between inbred substrains in acute and escalated intake of sucrose-sweetened palatable food vs. unsweetened chow pellets in a limited, intermittent access paradigm. In the present study, we examined two genetically similar substrains of BALB/c mice for escalation in food consumption, incubation of craving after a no-food training period, and compulsive-like food consumption in an aversive context. BALB/cJ and BALB/cByJ mice showed comparable levels of acute and escalated consumption of palatable food across training trials. Surprisingly, BALB/cByJ mice also showed binge-like eating of the unsweetened chow pellets similar to the escalation in palatable food intake of both substrains. Finally, we replicated the well-documented decrease in anxiety-like behavior in BALB/cByJ mice in the light-dark conflict test that likely contributed to greater palatable food intake than BALB/cJ in the light arena. To summarize, BALB/cByJ mice show binge-like eating in the presence and absence of sucrose. Possible explanations for the lack of selectivity in binge-like eating across diets (e.g., novelty preference, taste) are discussed.
RESUMEN
Prenatal exposure to addictive drugs can lead to placental epigenetic modifications, but a methylome-wide evaluation of placental DNA methylation changes after prenatal opioid exposure has not yet been performed. Placental tissue samples were collected at delivery from 19 opioid-exposed and 20 unexposed control full-term pregnancies. Placental DNA methylomes were profiled using the Illumina Infinium HumanMethylationEPIC BeadChip. Differentially methylated CpG sites associated with opioid exposure were identified with a linear model using the 'limma' R package. To identify differentially methylated regions (DMRs) spanning multiple CpG sites, the 'DMRcate' R package was used. The functions of genes mapped by differentially methylated CpG sites and DMRs were further annotated using Enrichr. Differentially methylated CpGs (n = 684, unadjusted p < 0.005 and |∆ß| ≥ 0.05) were mapped to 258 genes (including PLD1, MGAM, and ALCS2). Differentially methylated regions (n = 199) were located in 174 genes (including KCNMA1). Enrichment analysis of the top differentially methylated CpG sites and regions indicated disrupted epigenetic regulation of genes involved in synaptic structure, chemical synaptic transmission, and nervous system development. Our findings imply that placental epigenetic changes due to prenatal opioid exposure could result in placental dysfunction, leading to abnormal fetal brain development and the symptoms of opioid withdrawal in neonates.
RESUMEN
Psychostimulant (methamphetamine, cocaine) use disorders have a genetic component that remains mostly unknown. We conducted genome-wide quantitative trait locus (QTL) analysis of methamphetamine stimulant sensitivity. To facilitate gene identification, we employed a Reduced Complexity Cross between closely related C57BL/6 mouse substrains and examined maximum speed and distance traveled over 30 min following methamphetamine (2 mg/kg, i.p.). For maximum methamphetamine-induced speed following the second and third administration, we identified a single genome-wide significant QTL on chromosome 11 that peaked near the Cyfip2 locus (LOD = 3.5, 4.2; peak = 21 cM [36 Mb]). For methamphetamine-induced distance traveled following the first and second administration, we identified a genome-wide significant QTL on chromosome 5 that peaked near a functional intronic indel in Gabra2 coding for the alpha-2 subunit of the GABA-A receptor (LOD = 3.6-5.2; peak = 34-35 cM [66-67 Mb]). Striatal cis-expression QTL mapping corroborated Gabra2 as a functional candidate gene underlying methamphetamine-induced distance traveled. CRISPR/Cas9-mediated correction of the mutant intronic deletion on the C57BL/6J background to the wild-type C57BL/6NJ allele was sufficient to reduce methamphetamine-induced locomotor activity toward the wild-type C57BL/6NJ-like level, thus validating the quantitative trait variant (QTV). These studies show the power and efficiency of Reduced Complexity Crosses in identifying causal variants underlying complex traits. Functionally restoring Gabra2 expression decreased methamphetamine stimulant sensitivity and supports preclinical and human genetic studies implicating the GABA-A receptor in psychostimulant addiction-relevant traits. Importantly, our findings have major implications for studying psychostimulants in the C57BL/6J strain-the gold standard strain in biomedical research.
Asunto(s)
Trastornos Relacionados con Anfetaminas/genética , Sitios de Carácter Cuantitativo , Receptores de GABA-A/genética , Animales , Estimulantes del Sistema Nervioso Central/toxicidad , Femenino , Predisposición Genética a la Enfermedad , Masculino , Metanfetamina/toxicidad , Ratones , Ratones Endogámicos C57BL , Mutación , Carácter Cuantitativo HeredableRESUMEN
AIMS: Epigenetic variation of DNA methylation of the mu-opioid receptor gene (OPRM1) has been identified in the blood and saliva of individuals with opioid use disorder (OUD) and infants with neonatal opioid withdrawal syndrome (NOWS). It is unknown whether epigenetic variation in OPRM1 exists within placental tissue in women with OUD and whether it is associated with NOWS outcomes. In this pilot study, the authors aimed to 1) examine the association between placental OPRM1 DNA methylation levels and NOWS outcomes, and 2) compare OPRM1 methylation levels in opioid-exposed versus non-exposed control placentas. METHODS: Placental tissue was collected from eligible opioid (n = 64) and control (n = 29) women after delivery. Placental DNA was isolated and methylation levels at six cytosine-phosphate-guanine (CpG) sites within the OPRM1 promoter were quantified. Methylation levels were evaluated for associations with infant NOWS outcome measures: need for pharmacologic treatment, length of hospital stay (LOS), morphine treatment days, and treatment with two medications. Regression models were created and adjusted for clinical co-variates. Methylation levels between opioid and controls placentas were also compared. RESULTS: The primary opioid exposures were methadone and buprenorphine. Forty-nine (76.6%) of the opioid-exposed infants required pharmacologic treatment, 10 (15.6%) two medications, and average LOS for all opioid-exposed infants was 16.5 (standard deviation 9.7) days. There were no significant associations between OPRM1 DNA methylation levels in the six CpG sites and any NOWS outcome measures. No significant differences were found in methylation levels between the opioid and control samples. CONCLUSIONS: No significant associations were found between OPRM1 placental DNA methylation levels and NOWS severity in this pilot cohort. In addition, no significant differences were seen in OPRM1 methylation in opioid versus control placentas. Future association studies examining methylation levels on a genome-wide level are warranted.
RESUMEN
Binge eating (BE) is a heritable trait associated with eating disorders and involves episodes of rapid, large amounts of food consumption. We previously identified cytoplasmic FMR1-interacting protein 2 (Cyfip2) as a genetic factor underlying compulsive-like BE in mice. CYFIP2 is a homolog of CYFIP1 which is one of four paternally-deleted genes in patients with Type I Prader-Willi Syndrome (PWS), a neurodevelopmental disorder whereby 70% of cases involve paternal 15q11-q13 deletion. PWS symptoms include hyperphagia, obesity (if untreated), cognitive deficits, and obsessive-compulsive behaviors. We tested whether Cyfip1 haploinsufficiency (+/-) would enhance compulsive-like behavior and palatable food (PF) intake in a parental origin- and sex-dependent manner on two Cyfip2 genetic backgrounds, including the BE-prone C57BL/6N (Cyfip2N/N) background and the BE-resistant C57BL/6J (Cyfip2J/J) background. Cyfip1+/- mice showed increased compulsive-like behavior on both backgrounds and increased PF intake on the Cyfip2N/N background. In contrast, maternal Cyfip1 haploinsufficiency on the BE-resistant Cyfip2J/J background induced a robust escalation in PF intake in wild-type Cyfip1J/J males while having no effect in Cyfip1J/- males. Notably, induction of behavioral phenotypes in wild-type males following maternal Fmr1+/- has previously been reported. In the hypothalamus, there was a paternally-enhanced reduction in CYFIP1 protein whereas in the nucleus accumbens, there was a maternally-enhanced reduction in CYFIP1 protein. Nochange in FMR1 protein (FMRP) was observed in Cyfip1+/- mice, regardless of parental origin. To summarize, Cyfip1 haploinsufficiency increased compulsive-like behavior and induced genetic background-dependent, sex-dependent, and parent-of-origin-dependent effects on PF consumption and CYFIP1 expression that could have relevance for neurodevelopmental and neuropsychiatric disorders.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Regulación del Apetito/genética , Conducta Compulsiva/genética , Haploinsuficiencia , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Conducta Animal/fisiología , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Hipotálamo/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas/genética , Proteínas/metabolismo , RecompensaRESUMEN
RNA binding proteins are a diverse class of proteins that regulate all aspects of RNA metabolism. Accumulating studies indicate that heterogeneous nuclear ribonucleoproteins are associated with cellular adaptations in response to drugs of abuse. We recently mapped and validated heterogeneous nuclear ribonucleoprotein H1 (Hnrnph1) as a quantitative trait gene underlying differential behavioral sensitivity to methamphetamine. The molecular mechanisms by which hnRNP H1 alters methamphetamine behaviors are unknown but could involve pre- and/or post-synaptic changes in protein localization and function. Methamphetamine initiates post-synaptic D1 dopamine receptor signaling indirectly by binding to pre-synaptic dopamine transporters and vesicular monoamine transporters of midbrain dopaminergic neurons which triggers reverse transport and accumulation of dopamine at the synapse. Here, we examined changes in neuronal localization of hnRNP H in primary rat cortical neurons that express dopamine receptors that can be modulated by the D1 or D2 dopamine receptor agonists SKF38393 and (-)-Quinpirole HCl, respectively. Basal immunostaining of hnRNP H was localized primarily to the nucleus. D1 dopamine receptor activation induced an increase in hnRNP H nuclear immunostaining as detected by immunocytochemistry with a C-domain directed antibody containing epitope near the glycine-rich domain but not with an N-domain specific antibody. Although there was no change in hnRNP H protein in the nucleus or cytoplasm, there was a decrease in Hnrnph1 transcript following D1 receptor stimulation. Taken together, these results suggest that D1 receptor activation increases availability of the hnRNP H C-terminal epitope, which could potentially reflect changes in protein-protein interactions. Thus, D1 receptor signaling could represent a key molecular post-synaptic event linking Hnrnph1 polymorphisms to drug-induced behavior.
Asunto(s)
Agonistas de Dopamina/farmacología , Neuronas Dopaminérgicas/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/metabolismo , Receptores de Dopamina D1/metabolismo , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Animales , Células Cultivadas , Neuronas Dopaminérgicas/química , Neuronas Dopaminérgicas/efectos de los fármacos , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/análisis , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1/agonistas , Receptores de Dopamina D1/análisisRESUMEN
Exercise promotes stress resistance and is associated with reduced anxiety and reduced depression in both humans and in animal models. Despite the fact that dysfunction within the hypothalamic pituitary adrenal (HPA) axis is strongly linked to both anxiety and depressive disorders, the evidence is mixed as to how exercise alters the function of the HPA axis. Here we demonstrate that 4 weeks of voluntary wheel running was anxiolytic in C57BL/6J mice and resulted in a shorter time to peak corticosterone (CORT) and a more rapid decay of CORT following restraint stress. Wheel running was also associated with increased adrenal size and elevated CORT following systemic administration of adrenocorticotropic hormone. Finally, the HPA-axis response to peripheral or intracerebroventricular administration of dexamethasone did not suggest that wheel running increases HPA-axis negative feedback through GR-mediated mechanisms. Together these findings suggest that exercise may promote stress resilience in part by insuring a more rapid and shortened HPA response to a stressor thus affecting overall exposure to the potentially negative effects of more sustained HPA-axis activation.