RESUMEN
Identification of K-Ras and B-Raf mutations in colorectal cancer (CRC) is essential to predict patients' response to anti-EGFR therapy and formulate appropriate therapeutic strategies to improve prognosis and survival. Here, we combined parallel reaction monitoring (PRM) with high-field asymmetric waveform ion mobility (FAIMS) to enhance mass spectrometry sensitivity and improve the identification of low-abundance K-Ras and B-Raf mutations in biological samples without immunoaffinity enrichment. In targeted LC-MS/MS analyses, FAIMS reduced the occurrence of interfering ions and enhanced precursor ion purity, resulting in a 3-fold improvement in the detection limit for K-Ras and B-Raf mutated peptides. In addition, the ion mobility separation of isomeric peptides using FAIMS facilitated the unambiguous identification of K-Ras G12D and G13D peptides. The application of targeted LC-MS/MS analyses using FAIMS is demonstrated for the detection and quantitation of B-Raf V600E, K-Ras G12D, G13D, and G12V in CRC cell lines and primary specimens.
Asunto(s)
Neoplasias Colorrectales , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida , Péptidos/química , Proteínas Proto-Oncogénicas B-raf/genética , Mutación , Neoplasias Colorrectales/genética , Iones/químicaRESUMEN
The sensitivity of LC-MS in quantifying target proteins in plasma/tissues is significantly hindered by coeluted matrix interferences. While antibody-based immuno-enrichment effectively reduces interferences, developing and optimizing antibodies are often time-consuming and costly. Here, by leveraging the orthogonal separation capability of Field Asymmetric Ion Mobility Spectrometry (FAIMS), we developed a FAIMS/differential-compensation-voltage (FAIMS/dCV) method for antibody-free, robust, and ultrasensitive quantification of target proteins directly from plasma/tissue digests. By comparing the intensity-CV profiles of the target vs coeluted endogenous interferences, the FAIMS/dCV approach identifies the optimal CV for quantification of each target protein, thus maximizing the signal-to-noise ratio (S/N). Compared to quantification without FAIMS, this technique dramatically reduces endogenous interferences, showing a median improvement of the S/N by 14.8-fold for the quantification of 17 representative protein drugs and biomarkers in plasma or tissues and a 5.2-fold median increase in S/N over conventional FAIMS approach, which uses the peak CV of each target. We also discovered that the established CV parameters remain consistent over months and are matrix-independent, affirming the robustness of the developed FAIMS/dCV method and the transferability of the method across matrices. The developed method was successfully demonstrated in three applications: the quantification of monoclonal antibodies with subng/mL LOQ in plasma, an investigation of the time courses of evolocumab and its target PCSK9 in a preclinical setting, and a clinical investigation of low abundance obesity-related biomarkers. This innovative and easy-to-use method has extensive potential in clinical and pharmaceutical research, particularly where sensitive and high-throughput quantification of protein drugs and biomarkers is required.
Asunto(s)
Biomarcadores , Biomarcadores/análisis , Biomarcadores/sangre , Animales , Humanos , Espectrometría de Movilidad Iónica/métodos , Cromatografía Liquida/métodos , Proteínas/análisis , Espectrometría de Masas/métodos , Ratones , Preparaciones Farmacéuticas/análisis , Preparaciones Farmacéuticas/químicaRESUMEN
Blood serum and plasma are arguably the most commonly analyzed clinical samples, with dozens of proteins serving as validated biomarkers for various human diseases. Top-down proteomics may provide additional insights into disease etiopathogenesis since this approach focuses on protein forms, or proteoforms, originally circulating in blood, potentially providing access to information about relevant post-translational modifications, truncations, single amino acid substitutions, and many other sources of protein variation. However, the vast majority of proteomic studies on serum and plasma are carried out using peptide-centric, bottom-up approaches that cannot recapitulate the original proteoform content of samples. Clinical laboratories have been slow to adopt top-down analysis, also due to higher sample handling requirements. In this study, we describe a straightforward protocol for intact proteoform sample preparation based on the depletion of albumin and immunoglobulins, followed by simplified protein fractionation via polyacrylamide gel electrophoresis. After molecular weight-based fractionation, we supplemented the traditional liquid chromatography-tandem mass spectrometry (LC-MS2) data acquisition with high-field asymmetric waveform ion mobility spectrometry (FAIMS) to further simplify serum proteoform mixtures. This LC-FAIMS-MS2 method led to the identification of over 1000 serum proteoforms < 30 kDa, outperforming traditional LC-MS2 data acquisition and more than doubling the number of proteoforms identified in previous studies.
Asunto(s)
Espectrometría de Movilidad Iónica , Suero , Humanos , Espectrometría de Movilidad Iónica/métodos , Suero/química , Proteómica/métodos , Proteínas/análisis , Espectrometría de Masas/métodosRESUMEN
The high-throughput quantification of intact proteoforms using a label-free approach is typically performed on proteins in the 0-30 kDa mass range extracted from whole cell or tissue lysates. Unfortunately, even when high-resolution separation of proteoforms is achieved by either high-performance liquid chromatography or capillary electrophoresis, the number of proteoforms that can be identified and quantified is inevitably limited by the inherent sample complexity. Here, we benchmark label-free quantification of proteoforms of Escherichia coli by applying gas-phase fractionation (GPF) via field asymmetric ion mobility spectrometry (FAIMS). Recent advances in Orbitrap instrumentation have enabled the acquisition of high-quality intact and fragmentation mass spectra without the need for averaging time-domain transients prior to Fourier transform. The resulting speed improvements allowed for the application of multiple FAIMS compensation voltages in the same liquid chromatography-tandem mass spectrometry experiment without increasing the overall data acquisition cycle. As a result, the application of FAIMS to label-free quantification based on intact mass spectra substantially increases the number of both identified and quantified proteoforms without penalizing quantification accuracy in comparison to traditional label-free experiments that do not adopt GPF.
Asunto(s)
Espectrometría de Movilidad Iónica , Espectrometría de Masas en Tándem , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Proteínas/análisis , Cromatografía Liquida , Escherichia coli/químicaRESUMEN
The sensitivity and depth of proteomic analyses are limited by isobaric ions and interferences that preclude the identification of low abundance peptides. Extensive sample fractionation is often required to extend proteome coverage when sample amount is not a limitation. Ion mobility devices provide a viable alternate approach to resolve confounding ions and improve peak capacity and mass spectrometry (MS) sensitivity. Here, we report the integration of differential ion mobility with segmented ion fractionation (SIFT) to enhance the comprehensiveness of proteomic analyses. The combination of differential ion mobility and SIFT, where narrow windows of â¼m/z 100 are acquired in turn, is found particularly advantageous in the analysis of protein digests and typically provided more than 60% gain in identification compared to conventional single-shot LC-MS/MS. The application of this approach is further demonstrated for the analysis of tryptic digests from different colorectal cancer cell lines where the enhanced sensitivity enabled the identification of single amino acid variants that were correlated with the corresponding transcriptomic data sets.
Asunto(s)
Neoplasias del Colon , Proteogenómica , Cromatografía Liquida/métodos , Neoplasias del Colon/genética , Humanos , Iones , Proteoma , Proteómica/métodos , Espectrometría de Masas en Tándem/métodosRESUMEN
Field asymmetric ion mobility spectrometry (FAIMS), when used in proteomics studies, provides superior selectivity and enables more proteins to be identified by providing additional gas-phase separation. Here, we tested the performance of cylindrical FAIMS for the identification and characterization of proteoforms by top-down mass spectrometry of heterogeneous protein mixtures. Combining FAIMS with chromatographic separation resulted in a 62% increase in protein identifications, an 8% increase in proteoform identifications, and an improvement in proteoform identification compared to samples analyzed without FAIMS. In addition, utilization of FAIMS resulted in the identification of proteins encoded by lower-abundance mRNA transcripts. These improvements were attributable, in part, to improved signal-to-noise for proteoforms with similar retention times. Additionally, our results show that the optimal compensation voltage of any given proteoform was correlated with the molecular weight of the analyte. Collectively these results suggest that the addition of FAIMS can enhance top-down proteomics in both discovery and targeted applications.
Asunto(s)
Espectrometría de Movilidad Iónica , Proteómica , Espectrometría de Masas , ProteínasRESUMEN
High-field asymmetric waveform ion mobility spectrometry (FAIMS) has gained popularity in the proteomics field for its capability to improve mass spectrometry sensitivity and to decrease peptide co-fragmentation. The recent implementation of FAIMS on Tribrid Orbitrap instruments enhanced proteome coverage and increased the precision of quantitative measurements. However, the FAIMS interface has not been available on older generation Orbitrap mass spectrometers such as the Q-Exactive. Here, we report the integration of the FAIMS Pro device with embedded electrical and gas connections to a Q-Exactive HF mass spectrometer. Proteomic experiments performed on HeLa tryptic digests with the modified mass spectrometer improved signal to noise and reduced interfering ions, resulting in an increase of 42% in peptide identification. FAIMS was also combined with segmented ion fractionation where 100 m/z windows were obtained in turn to further increase the depth of proteome analysis by reducing the proportion of chimeric MS/MS spectra from 50 to 27%. We also demonstrate the application of FAIMS to improve quantitative measurements when using isobaric peptide labeling. FAIMS experiments performed on a two-proteome model revealed that FAIMS Pro provided a 65% improvement in quantification accuracy compared to conventional LC-MS/MS experiments.
Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Cromatografía Liquida , Humanos , Espectrometría de Movilidad Iónica , IonesRESUMEN
The benefits of high field asymmetric waveform ion mobility spectrometry (FAIMS) for mass spectrometry imaging of intact proteins in thin tissue sections have been demonstrated previously. In those works, a planar FAIMS device coupled with a Thermo Elite mass spectrometer was employed. Here, we have evaluated a newly introduced cylindrical FAIMS device (the FAIMS Pro) coupled with a Thermo Fusion Lumos mass spectrometer for liquid extraction surface analysis mass spectrometry imaging of intact proteins in thin tissue sections from rat testes, kidney, and brain. The method makes use of multiple FAIMS compensation values at each location (pixel) of the imaging array. A total of 975 nonredundant protein species were detected in the testes imaging dataset, 981 in the kidney dataset, and 249 in the brain dataset. These numbers represent a 7-fold (brain) and over 10-fold (testes, kidney) improvement on the numbers of proteins previously detected in LESA FAIMS imaging, and a 10-fold to over 20-fold improvement on the numbers detected without FAIMS on this higher performance mass spectrometer, approaching the same order of magnitude as those obtained in top-down proteomics of cell lines. Nevertheless, high throughput identification within the LESA FAIMS imaging workflow remains a challenge.
Asunto(s)
Proteínas/análisis , Animales , Encéfalo , Línea Celular , Espectrometría de Movilidad Iónica , Riñón/química , Masculino , Espectrometría de Masas , Proteómica , Ratas , Ratas Wistar , Testículo/químicaRESUMEN
The depth of proteomic analyses is often limited by the overwhelming proportion of confounding background ions that compromise the identification and quantification of low abundance peptides. To alleviate these limitations, we present a new high field asymmetric waveform ion mobility spectrometry (FAIMS) interface that can be coupled to the Orbitrap Tribrid mass spectrometers. The interface provides several advantages over previous generations of FAIMS devices, including ease of operation, robustness, and high ion transmission. Replicate LC-FAIMS-MS/MS analyses (n = 100) of HEK293 protein digests showed stable ion current over extended time periods with uniform peptide identification on more than 10,000 distinct peptides. For complex tryptic digest analyses, the coupling of FAIMS to LC-MS/MS enabled a 30% gain in unique peptide identification compared with non-FAIMS experiments. Improvement in sensitivity facilitated the identification of low abundance peptides, and extended the limit of detection by almost an order of magnitude. The reduction in chimeric MS/MS spectra using FAIMS also improved the precision and the number of quantifiable peptides when using isobaric labeling with tandem mass tag (TMT) 10-plex reagent. We compared quantitative proteomic measurements for LC-MS/MS analyses performed using synchronous precursor selection (SPS) and LC-FAIMS-MS/MS to profile the temporal changes in protein abundance of HEK293 cells following heat shock for periods up to 9 h. FAIMS provided 2.5-fold increase in the number of quantifiable peptides compared with non-FAIMS experiments (30,848 peptides from 2,646 proteins for FAIMS versus 12,400 peptides from 1,229 proteins with SPS). Altogether, the enhancement in ion transmission and duty cycle of the new FAIMS interface extended the depth and comprehensiveness of proteomic analyses and improved the precision of quantitative measurements.
Asunto(s)
Espectrometría de Movilidad Iónica/instrumentación , Proteoma/análisis , Proteómica/instrumentación , Proteómica/métodos , Cromatografía Liquida , Células HEK293 , Respuesta al Choque Térmico , Humanos , Marcaje Isotópico , Estabilidad Proteica , Reproducibilidad de los Resultados , Espectrometría de Masas en TándemRESUMEN
Multiplexed, isobaric tagging methods are powerful techniques to increase throughput, precision, and accuracy in quantitative proteomics. The dynamic range and accuracy of quantitation, however, can be limited by coisolation of tag-containing peptides that release reporter ions and conflate quantitative measurements across precursors. Methods to alleviate these effects often lead to the loss of protein and peptide identifications through online or offline filtering of interference containing spectra. To alleviate this effect, high-Field Asymmetric-waveform Ion Mobility Spectroscopy (FAIMS) has been proposed as a method to reduce precursor coisolation and improve the accuracy and dynamic range of multiplex quantitation. Here we tested the use of FAIMS to improve quantitative accuracy using previously established TMT-based interference standards (triple-knockout [TKO] and Human-Yeast Proteomics Resource [HYPER]). We observed that FAIMS robustly improved the quantitative accuracy of both high-resolution MS2 (HRMS2) and synchronous precursor selection MS3 (SPS-MS3)-based methods without sacrificing protein identifications. We further optimized and characterized the main factors that enable robust use of FAIMS for multiplexed quantitation. We highlight these factors and provide method recommendations to take advantage of FAIMS technology to improve isobaric-tag-quantification moving forward.
Asunto(s)
Espectrometría de Masas/métodos , Proteínas de Neoplasias/metabolismo , Péptidos/análisis , Proteoma/análisis , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Células HCT116 , Humanos , Péptidos/metabolismo , Proteoma/metabolismoRESUMEN
Liquid chromatography (LC) prefractionation is often implemented to increase proteomic coverage; however, while effective, this approach is laborious, requires considerable sample amount, and can be cumbersome. We describe how interfacing a recently described high-field asymmetric waveform ion mobility spectrometry (FAIMS) device between a nanoelectrospray ionization (nanoESI) emitter and an Orbitrap hybrid mass spectrometer (MS) enables the collection of single-shot proteomic data with comparable depth to that of conventional two-dimensional LC approaches. This next generation FAIMS device incorporates improved ion sampling at the ESI-FAIMS interface, increased electric field strength, and a helium-free ion transport gas. With fast internal compensation voltage (CV) stepping (25 ms/transition), multiple unique gas-phase fractions may be analyzed simultaneously over the course of an MS analysis. We have comprehensively demonstrated how this device performs for bottom-up proteomics experiments as well as characterized the effects of peptide charge state, mass loading, analysis time, and additional variables. We also offer recommendations for the number of CVs and which CVs to use for different lengths of experiments. Internal CV stepping experiments increase protein identifications from a single-shot experiment to >8000, from over 100 000 peptide identifications in as little as 5 h. In single-shot 4 h label-free quantitation (LFQ) experiments of a human cell line, we quantified 7818 proteins with FAIMS using intra-analysis CV switching compared to 6809 without FAIMS. Single-shot FAIMS results also compare favorably with LC fractionation experiments. A 6 h single-shot FAIMS experiment generates 8007 protein identifications, while four fractions analyzed for 1.5 h each produce 7776 protein identifications.
Asunto(s)
Espectrometría de Movilidad Iónica/instrumentación , Péptidos/análisis , Proteínas/análisis , Proteómica/instrumentación , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Línea Celular , HumanosRESUMEN
Although only a few years old, the combination of a linear ion trap with an Orbitrap analyzer has become one of the standard mass spectrometers to characterize proteins and proteomes. Here we describe a novel version of this instrument family, the Orbitrap Elite, which is improved in three main areas. The ion transfer optics has an ion path that blocks the line of sight to achieve more robust operation. The tandem MS acquisition speed of the dual cell linear ion trap now exceeds 12 Hz. Most importantly, the resolving power of the Orbitrap analyzer has been increased twofold for the same transient length by employing a compact, high-field Orbitrap analyzer that almost doubles the observed frequencies. An enhanced Fourier Transform algorithm-incorporating phase information-further doubles the resolving power to 240,000 at m/z 400 for a 768 ms transient. For top-down experiments, we combine a survey scan with a selected ion monitoring scan of the charge state of the protein to be fragmented and with several HCD microscans. Despite the 120,000 resolving power for SIM and HCD scans, the total cycle time is within several seconds and therefore suitable for liquid chromatography tandem MS. For bottom-up proteomics, we combined survey scans at 240,000 resolving power with data-dependent collision-induced dissociation of the 20 most abundant precursors in a total cycle time of 2.5 s-increasing protein identifications in complex mixtures by about 30%. The speed of the Orbitrap Elite furthermore allows scan modes in which complementary dissociation mechanisms are routinely obtained of all fragmented peptides.
Asunto(s)
Cromatografía Liquida , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/metabolismo , Proteoma/análisis , Proteoma/metabolismo , Proteómica/instrumentación , Espectrometría de Masas en Tándem/instrumentación , Células HeLa , Humanos , Proteómica/métodos , Espectrometría de Masas en Tándem/métodosRESUMEN
Gestagens, a class of veterinary drugs also called progestogens, are synthetic hormones used to increase feed efficiency and rate of gain in heifers. The Canadian Food Inspection Agency analyzes progestogens melengestrol acetate (MGA), megestrol acetate, and chlormadinone acetate using liquid chromatography-mass spectrometry (LC-MS). Our conventional gestagen method for kidney fat has many time-consuming steps, including solid-phase extraction. A sample preparation procedure having fewer clean-up steps was developed for routine diagnostic analysis of kidney fat and provided similar results faster, and at lower cost. A confirmatory liver method for gestagens, developed using salt-assisted extraction, employed minimal clean-up steps that resulted in high chemical background at the desired lower limit of quantification (LLOQ). Differential ion mobility spectrometry, specifically high-field asymmetric waveform ion mobility spectrometry (FAIMS), was used to filter chemical background in the gas phase. The effect of the ionization probe position on FAIMS parameters, including sensitivity, is described. With LC-FAIMS-MS, chemical background for each gestagen was virtually eliminated, resulting in a quantitative liver method having the desired 0.6 ng/g LLOQ and estimated limits of detection (LODs) up to 140 times lower than LC-MS. Incurred MGA samples, analyzed using kidney fat and liver methods from the same animal, show levels within the quantitative ranges of both methods.
Asunto(s)
Acetato de Melengestrol , Progestinas , Animales , Bovinos , Femenino , Progestinas/análisis , Canadá , Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Acetato de Melengestrol/análisis , Hígado/químicaRESUMEN
Thyreostatic drugs (thyreostats) interfere with thyroid function and have been used illegally in animals slaughtered for food. Thyreostat use leads to poorer quality meat, and the drug residues can cause adverse effects in humans. These drugs, with the exception of thiouracil, do not occur naturally and require sensitive methodologies for their detection in animal tissues. Because thyreostats are low-molecular-weight polar analytes, liquid chromatography-mass spectrometry (LC-MS) is typically used for detection and, in particular, triple quadrupole mass spectrometry with selective reaction monitoring (i.e., LC-SRM). However, LC-SRM thyreostat methods suffer from chemical background noise and endogenous interferences arising from the complex tissue matrix. An improved high-field asymmetric waveform ion mobility spectrometry interface (FAIMS Pro), which separates ions based on differential ion mobility, was combined with LC-SRM to minimize these interferences. Using the same samples and conditions, LC-FAIMS-SRM showed improvements in the signal-to-noise ratio (S/N) of up to 50 times compared with our validated LC-SRM method. In addition, wider linear ranges, including substantial improvements in the lower limit of quantification (approximately an order of magnitude for tapazole and methylthiouracil), were observed with LC-FAIMS-SRM.
Asunto(s)
Residuos de Medicamentos , Espectrometría de Movilidad Iónica , Animales , Cromatografía Liquida , Espectrometría de Movilidad Iónica/métodos , Iones/química , Espectrometría de Masas en Tándem/métodosRESUMEN
High-field asymmetric waveform ion mobility spectrometry (FAIMS) focuses and separates gas-phase analyte ions from chemical background, offering substantial improvements in the detection of targeted species in biological matrices. Ion separations have been typically performed at atmospheric pressure and ambient temperature, although routine small molecule quantitation by LC-MS (and thus LC-FAIMS-MS) is generally performed at liquid flow rates (e.g., in excess of 200 microL/min) in which atmospheric pressure ionization sources (e.g., APCI and ESI) need to be run at elevated temperatures to enhance ion desolvation. Heat from the ionization source and/or the mass spectrometer capillary interface is shown to have a significant impact on the performance of a conventional FAIMS electrode set. This study introduces a new FAIMS system that uses gas heating/cooling to quickly reach temperature equilibrium independent of the external temperature conditions. A series of equations and balance plots, which look at the effect of temperature and other variables, on the normalized field strength (E/N), are introduced and used to explain experimental observations. Examples where the ion behavior deviates from the predicted behavior are presented and explanations based on clusters or changes in ion-neutral interactions are given. Consequences of the use of temperature control, and in particular advantages of using different temperature settings on the inner and outer electrodes, for the purpose of manipulating ion separation are described.
Asunto(s)
Cromatografía Liquida/instrumentación , Calefacción/instrumentación , Microfluídica/instrumentación , Espectrometría de Masa por Ionización de Electrospray/instrumentación , Transductores , Cromatografía Liquida/métodos , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Microfluídica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectrometría de Masa por Ionización de Electrospray/métodosRESUMEN
The implementation of an aerodynamic mechanism to improve ion sampling between nanoelectrospray (n-ESI) and FAIMS was recently reported for proteomic analyses. This investigation explores the new FAIMS interface for small molecule analysis at high liquid flow rates and includes an examination of key differences in ionization between heated-ESI (HESI) and n-ESI. The sheath gas, critical for desolvation with HESI, affects FAIMS operation as higher FAIMS gas flow rates are required to achieve sufficient desolvation. Gas flow rate experiments also uncovered m/z discrimination with the conventional design as larger (slower moving) m/z ions experienced larger signal intensity losses than smaller m/z ions due to the desolvation gas flow having a greater drag effect on slower moving ions. The modified inlet in new FAIMS dampens the gas drag, making the HESI source more amenable as less m/z bias and significantly lower %RSD values were observed. Furthermore, a larger radius inner electrode in new FAIMS enables significantly higher E/N (electric field/number gas density) to be achieved using the existing waveform generator. Thus, new FAIMS signal intensities using only nitrogen improved 1.25- to 2-fold compared with the conventional design and 50% helium. Adding helium to the new FAIMS gave no significant improvements. The larger inner electrode also decreased ion focusing capabilities, and the effect on peak separation and ion intensity was examined in detail. The peak capacity of new FAIMS was approximately double that of conventional FAIMS; separation of seven low m/z ions gave a peak capacity of 37.7 using the gas additive 2-propanol. Graphical Abstract á .
RESUMEN
One limitation in the growing field of ambient or direct analysis methods is reduced selectivity caused by the elimination of chromatographic separations prior to mass spectrometric analysis. We explored the use of high-field asymmetric waveform ion mobility spectrometry (FAIMS), an ambient pressure ion mobility technique, to separate the closely related opiate isomers of morphine, hydromorphone, and norcodeine. These isomers cannot be distinguished by tandem mass spectrometry. Separation prior to MS analysis is, therefore, required to distinguish these compounds, which are important in clinical chemistry and toxicology. FAIMS was coupled to a triple quadrupole mass spectrometer, and ionization was performed using either a pneumatically assisted heated electrospray ionization source (H-ESI) or paper spray, a direct analysis method that has been applied to the direct analysis of dried blood spots and other complex samples. We found that FAIMS was capable of separating the three opiate structural isomers using both H-ESI and paper spray as the ionization source.
Asunto(s)
Analgésicos Opioides/aislamiento & purificación , Codeína/análogos & derivados , Hidromorfona/aislamiento & purificación , Morfina/aislamiento & purificación , Detección de Abuso de Sustancias/métodos , Aerosoles , Analgésicos Opioides/análisis , Química Clínica/métodos , Codeína/análisis , Codeína/aislamiento & purificación , Técnicas Electroquímicas , Estudios de Factibilidad , Toxicología Forense/métodos , Hidromorfona/análisis , Morfina/análisis , Papel , Solventes/química , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en TándemRESUMEN
Simulations show that significant ion losses occur within the commercial electrospray ionization-field asymmetric waveform ion mobility spectrometer (ESI-FAIMS) interface owing to an angular desolvation gas flow and because of the impact of the FAIMS carrier gas onto the inner rf (radio frequency) electrode. The angular desolvation gas flow diverts ions away from the entrance plate orifice while the carrier gas annihilates ions onto the inner rf electrode. A novel ESI-FAIMS interface is described that optimizes FAIMS gas flows resulting in large improvements in transmission. Simulations with the bromochloroacetate anion showed an improvement of ~9-fold to give ~70% overall transmission). Comparable transmission improvements were attained experimentally for six peptides (2+) in the range of m/z 404.2 to 653.4 at a chromatographic flow rate of 300 nL/min. Selected ion chromatograms (SIC) from nano-LC-FAIMS-MS analyses showed 71% (HLVDEPQNLIK, m/z 653.4, 2+) to 95% (LVNELTEFAK, m/z 582.3, 2+) of ion signal compared with ion signal in the SIC from LC-MS analysis. IGSEVYHNLK (580.3, 2+) showed 24% more ion signal compared with LC-MS and is explained by enhanced desolvation in FAIMS. A 3-10 times lower limits of quantitation (LOQ) (<15% RSD) was achieved for chemical noise limited peaks with FAIMS. Peaks limited by ion statistics showed subtle improvement in RSD and yielded comparable LOQ to that attained with nano-LC-MS (without FAIMS). These improvements were obtained using a reduced FAIMS separation gap (from 2.5 to 1.5 mm) that results in a shorter residence time (13.2 ms ± 3.9 ms) and enables the use of a helium free transport gas (100% nitrogen).
Asunto(s)
Espectrometría de Masa por Ionización de Electrospray/instrumentación , Espectrometría de Masa por Ionización de Electrospray/métodos , Electrodos , Diseño de Equipo , Gases/química , Nanotecnología/instrumentación , Péptidos/química , Reproducibilidad de los Resultados , Sensibilidad y EspecificidadRESUMEN
Recent reports describing enhanced performance when using gas additives in a DMS device (planar electrodes) have indicated that comparable benefits are not attainable using FAIMS (cylindrical electrodes), owing to the non-homogeneous electric fields within the analyzer region. In this study, a FAIMS system (having cylindrical electrodes) was modified to allow for controlled delivery of gas additives. An experiment was carried out that illustrates the important distinction between gas modifiers present as unregulated contaminants and modifiers added in a controlled manner. The effect of contamination was simulated by adjusting the ESI needle position to promote incomplete desolvation, thereby permitting ESI solvent vapor into the FAIMS analyzer region, causing signal instability and irreproducible CV values. However, by actively controlling the delivery of the gas modifier, reproducible CV spectra were obtained. The effects of adding different gas modifiers were examined using 15 positive ions having mass-to-charge (m/z) values between 90 and 734. Significant improvements in peak capacity and increases in ion transmission were readily attained by adding acetonitrile vapor, even at trace levels (≤0.1%). Increases in signal intensity were greatest for the low m/z ions; for the six lowest molecular weight species, signal intensities increased by â¼10- to over 100-fold compared with using nitrogen without gas additives, resulting in equivalent or better signal intensities compared with ESI without FAIMS. These results confirm that analytical benefits derived from the addition of gas modifiers reported with a uniform electric field (DMS) also are observed using a non-homogenous electric field (FAIMS) in the analyser region.