Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Autoimmun ; 144: 103181, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38522129

RESUMEN

Inflammatory bowel diseases (IBDs) are chronic intestinal disorders often characterized by a dysregulation of T cells, specifically T helper (Th) 1, 17 and T regulatory (Treg) repertoire. Increasing evidence demonstrates that dietary polyphenols from Mangifera indica L. extract (MIE, commonly known as mango) mitigate intestinal inflammation and splenic Th17/Treg ratio. In this study, we aimed to dissect the immunomodulatory and anti-inflammatory properties of MIE using a reverse translational approach, by initially using blood from an adult IBD inception cohort and then investigating the mechanism of action in a preclinical model of T cell-driven colitis. Of clinical relevance, MIE modulates TNF-α and IL-17 levels in LPS spiked sera from IBD patients as an ex vivo model of intestinal barrier breakdown. Preclinically, therapeutic administration of MIE significantly reduced colitis severity, pathogenic T-cell intestinal infiltrate and intestinal pro-inflammatory mediators (IL-6, IL-17A, TNF-α, IL-2, IL-22). Moreover, MIE reversed colitis-induced gut permeability and restored tight junction functionality and intestinal metabolites. Mechanistic insights revealed MIE had direct effects on blood vascular endothelial cells, blocking TNF-α/IFN-γ-induced up-regulation of COX-2 and the DP2 receptors. Collectively, we demonstrate the therapeutic potential of MIE to reverse the immunological perturbance during the onset of colitis and dampen the systemic inflammatory response, paving the way for its clinical use as nutraceutical and/or functional food.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Mangifera , Adulto , Humanos , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Células Endoteliales/metabolismo , Mucosa Intestinal , Modelos Animales de Enfermedad
2.
Small ; 19(51): e2208209, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37096900

RESUMEN

Hydrogen peroxide (H2 O2 ) is a primary reactive oxygen species (ROS) that can act as a chemical signal in developing and progressing serious and life-threatening diseases like cancer. Due to the stressful nature of H2 O2 , there is an urgent need to develop sensitive analytical approaches to be applied to various biological matrices. Herein, a portable point-of-care electrochemical system based on MXene-Co3 O4 nanocomposites to detect H2 O2 in different cancer cell-lines is presented. The developed sensor is affordable, disposable, and highly selective for H2 O2 detection. This approach achieves a dynamic linear range of 75 µm with a LOD of 0.5 µm and a LOQ of 1.6 µm. To improve the practical application, the level of ROS is evaluated both in cancer cell lines MDA-MB-231 and DU145, respectively, to breast and prostate cancers, and in healthy HaCat cells. Moreover, the same cancer cells are treated with transforming growth factor-ß1, and MXene-Co3 O4 modified strip is capable to monitorROS variation. The results are satisfactory compared with the cellular ROS fluorescent assay based on DCFH/DCFH-DA. These results open new perspectives for real-time monitoring of cancer progression and the efficacy of the therapy.


Asunto(s)
Nanocompuestos , Neoplasias , Masculino , Humanos , Especies Reactivas de Oxígeno , Peróxido de Hidrógeno/metabolismo , Neoplasias/tratamiento farmacológico
3.
Mar Drugs ; 21(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38132963

RESUMEN

Hydrogen sulfide (H2S) is a signaling molecule endogenously produced within mammals' cells that plays an important role in inflammation, exerting anti-inflammatory effects. In this view, the research has shown a growing interest in identifying natural H2S donors. Herein, for the first time, the potential of marine extract as a source of H2S-releasing agents has been explored. Different fractions obtained by the Indonesian ascidian Polycarpa aurata were evaluated for their ability to release H2S in solution. The main components of the most active fraction were then characterized by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) and NMR spectroscopy. The ability of this fraction to release H2S was evaluated in a cell-free assay and J774 macrophages by a fluorimetric method, and its anti-inflammatory activity was evaluated in vitro and in vivo by using carrageenan-induced mouse paw edema. The anti-inflammatory effects were assessed by inhibiting the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX2), and interleukin-6 (IL-6), coupled with a reduction in nitric oxide (NO) and IL-6 levels. Thus, this study defines the first example of a marine source able to inhibit inflammatory responses in vivo through the release of H2S.


Asunto(s)
Sulfuro de Hidrógeno , Ratones , Animales , Sulfuro de Hidrógeno/efectos adversos , Sulfuro de Hidrógeno/metabolismo , Interleucina-6/metabolismo , Antiinflamatorios/química , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Carragenina/efectos adversos , Óxido Nítrico/metabolismo , Edema/inducido químicamente , Edema/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo II/metabolismo , Mamíferos/metabolismo
4.
Int J Mol Sci ; 24(11)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37298475

RESUMEN

In this paper, we investigate the structural and biological features of G-quadruplex (G4) aptamers as promising antiproliferative compounds affecting the STAT3 signalling pathway. Targeting the STAT3 protein through high-affinity ligands to reduce its levels or activity in cancer has noteworthy therapeutic potential. T40214 (STAT) [(G3C)4] is a G4 aptamer that can influence STAT3 biological outcomes in an efficient manner in several cancer cells. To explore the effects of an extra cytidine in second position and/or of single site-specific replacements of loop residues in generating aptamers that can affect the STAT3 biochemical pathway, a series of STAT and STATB [GCG2(CG3)3C] analogues containing a thymidine residue instead of cytidines was prepared. NMR, CD, UV, and PAGE data suggested that all derivatives adopt dimeric G4 structures like that of unmodified T40214 endowed with higher thermal stability, keeping the resistance in biological environments substantially unchanged, as shown by the nuclease stability assay. The antiproliferative activity of these ODNs was tested on both human prostate (DU145) and breast (MDA-MB-231) cancer cells. All derivatives showed similar antiproliferative activities on both cell lines, revealing a marked inhibition of proliferation, particularly at 72 h at 30 µM. Transcriptomic analysis aimed to evaluate STAT's and STATB's influence on the expression of many genes in MDA-MB-231 cells, suggested their potential involvement in STAT3 pathway modulation, and thus their interference in different biological processes. These data provide new tools to affect an interesting biochemical pathway and to develop novel anticancer and anti-inflammatory drugs.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Neoplasias , Humanos , Masculino , Aptámeros de Nucleótidos/química , Línea Celular , Transducción de Señal , Factor de Transcripción STAT3/metabolismo , Femenino
5.
Int J Mol Sci ; 24(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37047736

RESUMEN

Breast cancer is the most frequent form of cancer occurring in women of any age. Among the different types, the triple-negative breast cancer (TNBC) subtype is recognized as the most severe form, being associated with the highest mortality rate. Currently, there are no effective treatments for TNBC. For this reason, the research of novel therapeutics is urgently needed. Natural products and their analogs have historically made a major contribution to pharmacotherapy and the treatment of various human diseases, including cancer. In this study, we explored the potential anti-cancer effects of erucin, the most abundant H2S-releasing isothiocyanate present in arugula (Eruca sativa) in MDA-MB-231 cells, a validated in vitro model of TNBC. We found that erucin, in a concentration-dependent manner, significantly inhibited MDA-MB-231 cell proliferation by inducing apoptosis and autophagy. Additionally, erucin prevented intracellular ROS generation promoting the expression of key antioxidant genes and halted MDA-MB-231 cell migration, invasion, and colony formation. In conclusion, using a cellular and molecular biology approach, we show that the consumption of erucin could represent a novel and promising strategy for intervention against TNBC.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/metabolismo , Línea Celular Tumoral , Apoptosis , Isotiocianatos/farmacología , Isotiocianatos/uso terapéutico , Autofagia , Proliferación Celular
6.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-36499249

RESUMEN

In this paper, we study the biological properties of two TBA analogs containing one and two extra G-tetrads, namely TBAG3 and TBAG4, respectively, and two further derivatives in which one of the small loops at the bottom (TBAG41S) or the large loop at the top (TBAG4GS) of the TBAG4 structure has been completely modified by replacing all loop residues with abasic site mimics. The therapeutical development of the TBA was hindered by its low thermodynamic and nuclease stability, while its potential as an anticancer/antiproliferative molecule is also affected by the anticoagulant activity, being a side effect in this case. In order to obtain suitable TBA analogs and to explore the involvement of specific aptamer regions in biological activity, the antiproliferative capability against DU 145 and MDAMB 231 cancer cell lines (MTT), the anticoagulant properties (PT), the biological degradability (nuclease stability assay) and nucleolin (NCL) binding ability (SPR) of the above described TBA derivatives have been tested. Interestingly, none of the TBA analogs exhibits an anticoagulant activity, while all of them show antiproliferative properties to the same extent. Furthermore, TBAG4 displays extraordinary nuclease stability and promising antiproliferative properties against breast cancer cells binding NCL efficiently. These results expand the range of G4-structures targeting NCL and the possibility of developing novel anticancer and antiviral drugs.


Asunto(s)
Aptámeros de Nucleótidos , G-Cuádruplex , Neoplasias , Humanos , Aptámeros de Nucleótidos/química , Anticoagulantes/química , Trombina/metabolismo
7.
J Immunol ; 201(12): 3524-3533, 2018 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-30455401

RESUMEN

DRB4*01:01 (DRB4) is a secondary HLA-DR product that is part of the high-risk DR4/DQ8 haplotype that is associated with type 1 diabetes (T1D). DRB4 shares considerable homology with HLA-DR4 alleles that predispose to autoimmunity, including DRB1*04:01 and DRB1*04:04. However, the DRB4 protein sequence includes distinct residues that would be expected to alter the characteristics of its binding pockets. To identify high-affinity peptides that are recognized in the context of DRB4, we used an HLA class II tetramer-based approach to identify epitopes within multiple viral Ags. We applied a similar approach to identify antigenic sequences within glutamic acid decarboxylase 65 and pre-proinsulin that are recognized in the context of DRB4. Seven sequences were immunogenic, eliciting high-affinity T cell responses in DRB4+ subjects. DRB1*04:01-restricted responses toward many of these peptides have been previously described, but responses to a novel pre-proinsulin 9-28 peptide were commonly observed in subjects with T1D. Furthermore, T cells that recognized this peptide in the context of DRB4 were present at significantly higher frequencies in patients with T1D than in healthy controls, implicating this as a disease-relevant specificity that may contribute to the breakdown of ß cell tolerance in genetically susceptible individuals. We then deduced a DRB4 motif and confirmed its key features through structural modeling. This modeling suggested that the core epitope within the pre-proinsulin 9-28 peptide has a somewhat unusual binding motif, with tryptophan in the fourth binding pocket of DRB4, perhaps influencing the availability of this complex for T cell selection.


Asunto(s)
Autoantígenos/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Epítopos de Linfocito T/metabolismo , Péptidos/metabolismo , Proinsulina/metabolismo , Linfocitos T/inmunología , Secuencias de Aminoácidos/genética , Presentación de Antígeno , Mapeo Epitopo , Epítopos de Linfocito T/genética , Predisposición Genética a la Enfermedad , Glutamato Descarboxilasa/metabolismo , Cadenas HLA-DRB1/genética , Cadenas HLA-DRB1/metabolismo , Humanos , Activación de Linfocitos , Modelos Químicos , Péptidos/genética , Proinsulina/genética
8.
Eur J Pharmacol ; 977: 176758, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38901528

RESUMEN

Vinclozolin (VCZ) is a common dicarboximide fungicide used to protect crops from diseases. It is also an endocrine disruptor, and its effects on various organs have been described but its influence on vasculature has not yet been addressed. This study focuses on the potential mechanism of VCZ-induced vascular injury. The effect of VCZ on vascular function in terms of relaxing and contracting response was evaluated in mice aorta. A short exposure to VCZ affected the endothelial but not the smooth muscle component. Specifically, it caused a disruption of the eNOS/NO signaling. In line, a short exposure to VCZ in bovine aortic endothelial cells promoted eNOS uncoupling resulting in a reduction of NO bioavailability and eNOS dimer/monomer ratio, and in turn an increase of nitro-tyrosine levels and ROS formation. Prolonging the exposure to VCZ (3 and 6h) an up-regulation of Nox4, enzyme-generating ROS constitutively expressed in endothelial cells, and an increase in ROS and malondialdehyde content coupled with a reduction in NO levels were found. These events were strictly linked to endoplasmic reticulum stress as demonstrated by the phosphorylation of inositol-requiring transmembrane kinase endoribonuclease 1α (IRE1α), a stress sensor and its reversion by using a selective inhibitor. Collectively, these results demonstrated that VCZ provokes endothelial dysfunction by oxidative stress involving eNOS/Nox4/IRE1α axis. The rapid exposure affected the endothelial function promoting eNOS uncoupling while a post-transcriptional modification, involving Nox4/IRE1α signaling, occurred following prolonged exposure. Thus, exposure to VCZ could contribute to the onset and/or progression of cardiovascular diseases associated with endothelial dysfunction.


Asunto(s)
Disruptores Endocrinos , Endorribonucleasas , Células Endoteliales , NADPH Oxidasa 4 , Óxido Nítrico Sintasa de Tipo III , Óxido Nítrico , Oxazoles , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Óxido Nítrico Sintasa de Tipo III/metabolismo , Transducción de Señal/efectos de los fármacos , Bovinos , Ratones , Disruptores Endocrinos/toxicidad , NADPH Oxidasa 4/metabolismo , Oxazoles/farmacología , Endorribonucleasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Óxido Nítrico/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Masculino , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Especies Reactivas de Oxígeno/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/patología
9.
Biomed Pharmacother ; 151: 113137, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35605291

RESUMEN

The role of H2S in urothelial carcinoma (UC) is still unclear. Here we have evaluated the expression of H2S producing enzymes as well as the effect of endogenous and exogenous H2S on human bladder UC cells. In human UC cells the expression of cystathionine ß-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (3-MST); is significantly lower as compared to healthy cells. A modulatory role for the H2S pathway is supported by the finding that, the overexpression of CSE or CBS, but not 3-MST, inhibits cell proliferation and promotes apoptosis. A similar effect is obtained by using exogenous H2S. Diallyl trisulfide (DATS), which is a fully characterized H2S donor, inhibits the proliferation of UC cells in a time and concentration-dependent manner as well as promotes apoptosis. Moreover, DATS also induces autophagy, as determined by transcriptomic and western blot analysis. Finally, DATS inhibits mRNA expression levels of canonical markers of epithelial-mesenchymal transition by limiting migration and clonogenic ability of human UC cells in vitro. In conclusion, in urothelial carcinoma, there is an impairment of H2S pathway that involves CSE and CBS- derived hydrogen sulfide. Thus, targeting H2S signaling pathway in urothelial carcinoma could represent a novel therapeutic strategy.


Asunto(s)
Carcinoma de Células Transicionales , Sulfuro de Hidrógeno , Neoplasias de la Vejiga Urinaria , Línea Celular , Cistationina betasintasa , Humanos , Sulfuro de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/farmacología , Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
10.
Gastroenterology ; 139(1): 281-91, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20303356

RESUMEN

BACKGROUND & AIMS: Autoimmune pancreatitis (AIP) underlies 5%-11% of cases of chronic pancreatitis. An association between AIP and the human leukocyte antigen (HLA)-DRB1*0405/DQB1*0401 haplotype has been reported, but linkage disequilibrium has precluded the identification of predisposing HLA gene(s). We studied the role of single HLA genes in the development of AIP in transgenic mice. METHODS: CD4(+) T-cell-negative I-Abeta chain(-/-) (Ab0) mice develop AIP spontaneously, likely due to dysregulation of CD8(+) T- cell responses. We generated Ab0 nonobese diabetic (NOD) mice transgenic for HLA-DR*0405, leading to rescue of CD4(+) T cells; we compared their susceptibility to AIP with HLA-DQ8 or HLA-DR*0401 (single) transgenic, or HLA-DR*0405/DQ8 (double) transgenic mice. RESULTS: CD4(+) T-cell-competent HLA-DR*0405 transgenic Ab0 NOD mice develop AIP with high prevalence after sublethal irradiation and adoptive transfer of CD90(+) T cells, leading to complete pancreatic atrophy. HLA-DR*0405 transgenic mice can also develop unprovoked AIP, whereas HLA-DR*0401, HLA-DQ8, and HLA-DR*0405/DQ8 transgenic Ab0 NOD controls all remained normal, even after irradiation and adoptive transfer of CD90(+) T cells. Pancreas histology in HLA-DR*0405 transgenic mice was characterized by destructive infiltration of the exocrine tissue with CD4(+) and CD8(+) T cells, B cells, and macrophages. Mice with complete pancreatic atrophy lost weight, developed fat stools, and had reduced levels of serum lipase activity. CONCLUSIONS: Because HLA-DR*0405 expression fails to protect mice from AIP, the HLA-DRB1*0405 allele appears to be an important risk factor for AIP on the HLA-DRB1*0405/DQB1*0401 haplotype. This humanized mouse model should be useful for studying immunopathogenesis, diagnostic markers, and therapy of human AIP.


Asunto(s)
Enfermedades Autoinmunes/etiología , Genes MHC Clase II , Antígenos HLA-DR/genética , Pancreatitis Crónica/etiología , Traslado Adoptivo , Animales , Atrofia , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/patología , Femenino , Antígenos HLA-DR/fisiología , Cadenas HLA-DRB1 , Humanos , Lipasa/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Transgénicos , Páncreas/patología , Pancreatitis Crónica/genética , Pancreatitis Crónica/patología , Riesgo
11.
Diabetes Metab Res Rev ; 27(8): 727-36, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22069252

RESUMEN

BACKGROUND: Islet-antigen-specific CD4+ T cells are known to promote auto-immune destruction in T1D. Measuring T-cell number and function provides an important biomarker. In response to this need, we evaluated responses to proinsulin and GAD epitopes in a multicentre study. METHODS: A tetramer-based assay was used in five participating centres to measure T-cell reactivities to DR0401-restricted epitopes. Three participating centres concurrently performed ELISPOT or immunoblot assays. Each centre used blind-coded, centrally distributed peptide and tetramer reagents. RESULTS: All participating centres detected responses to auto-antigens and the positive control antigen, and in some cases cloned the corresponding T cells. However, response rates varied among centres. In total, 74% of patients were positive for at least one islet epitope. The most commonly recognized epitope was GAD270-285. Only a minority of the patients tested by tetramer and ELISPOT were concordant for both assays. CONCLUSIONS: This study successfully detected GAD and proinsulin responses using centrally distributed blind-coded reagents. Centres with little previous experience using class II tetramer reagents implemented the assay. The variability in response rates observed for different centres suggests technical difficulties and/or heterogeneity within the local patient populations tested. Dual analysis by tetramer and ELISPOT or immunoblot assays was frequently discordant, suggesting that these assays detect distinct cell populations. Future efforts should investigate shared blood samples to evaluate assay reproducibility and longitudinal samples to identify changes in T-cell phenotype that correlate with changes in disease course.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Diabetes Mellitus Tipo 1/inmunología , Epítopos de Linfocito T/inmunología , Antígenos HLA-DR/inmunología , Antígenos de Histocompatibilidad Clase II/inmunología , Adulto , Ensayo de Immunospot Ligado a Enzimas , Humanos , Proinsulina/inmunología
12.
Diabetes ; 54 Suppl 2: S18-24, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16306335

RESUMEN

A variable number of tandem repeats (VNTR) polymorphism upstream of the insulin promoter is strongly associated with type 1 diabetes. The short class I alleles are predisposing and the long class III alleles are protective. As a possible mechanism for this effect, we previously reported a two- to threefold higher insulin transcription from class III than from class I chromosomes in thymus where insulin is expressed at low levels, presumably for the purpose of self-tolerance. In this article, we confirm this finding with independent methodology and report studies testing the hypothesis that class III alleles are associated with T-cell tolerance to (pro)insulin. Cytokine release in vitro after stimulation with 21 overlapping preproinsulin epitopes was assessed in blood mononuclear cells as well as naive and memory CD4+ T-cell subsets from 33 individuals with the high-risk DRB1*04, DQ8 haplotype (12 type 1 diabetic patients, 11 healthy control subjects, and 10 autoantibody-positive subjects). No significant differences between genotypes (24 I/I subjects versus 10 I/III or III/III subjects) were observed for gamma-interferon, tumor necrosis factor-alpha, or interleukin (IL)-4. By contrast, the I/III + III/III group showed a significant threefold higher IL-10 release in memory T-cells for whole proinsulin and the immunodominant region. Given that IL-10 is a marker of regulatory function, our data are consistent with the hypothesis that higher insulin levels in the thymus promote the formation of regulatory T-cells, a proposed explanation for the protective effect of the class III alleles.


Asunto(s)
Antígenos HLA-DQ/genética , Antígeno HLA-DR4/genética , Insulina/genética , Repeticiones de Minisatélite/genética , Polimorfismo Genético , Proinsulina/inmunología , Linfocitos T/inmunología , Adolescente , Adulto , Niño , Preescolar , Diabetes Mellitus Tipo 1/genética , Genotipo , Humanos , Interleucina-10/genética , Antígenos Comunes de Leucocito/inmunología , Proinsulina/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Valores de Referencia
13.
J Immunol Methods ; 285(2): 223-35, 2004 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-14980436

RESUMEN

The frequencies of antigen-specific memory cells are often low in chronic disease states related to infection and autoimmunity, making detection of such populations difficult, even with high sensitivity assays such as the cytokine enzyme-linked immunospot (ELISPOT). The spectrum and function of antigen presenting cells (APC) in the peripheral compartment can differ considerably from the inflamed target organ. In order to approximate the costimulatory environment of the target organ, we measured T cell responses with and without the addition of agonistic anti-CD28 antibody in the ELISPOT assay. CD4 and CD8 IFN-gamma responses to viral (hepatitis C) and autoimmune antigens (islet cell) were tested in 10 hepatitis C and 8 type 1 diabetic as well as healthy control subjects. IFN-gamma responses to tetanus toxoid, mumps and cytomegalovirus (CMV) protein antigen, as well as Epstein-Barr virus and CMV peptides were also measured in healthy control subjects. We found higher frequencies of T cells reactive to protein and peptide antigens when anti-CD28 antibody was present, often detecting responses only in the presence of anti-CD28 antibody. These results demonstrate that anti-CD28 antibody signal enhanced ELISPOT assays can facilitate the identification of low precursor frequency T cells in chronic infectious and autoimmune disease states where suboptimal costimulatory environment may exist in the periphery. The use of such costimulation may also enable a more quantitative assessment of circulating memory effector T cell frequency.


Asunto(s)
Antígenos Virales/inmunología , Antígenos CD28/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Ensayo de Inmunoadsorción Enzimática/métodos , Citomegalovirus/inmunología , Diabetes Mellitus Tipo 1/inmunología , Citometría de Flujo , Hepatitis C/inmunología , Herpesvirus Humano 4/inmunología , Humanos , Interferón gamma/inmunología
14.
Ann N Y Acad Sci ; 1037: 22-5, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15699489

RESUMEN

In animal models autoreactive CD8(+) T cells are crucial in the development of type 1 diabetes (T1D); however, their role in human T1D is still not known. To address the role of CD81 T cells we performed a pilot study by investigating CD8(+) T cell-mediated cytokine secretion after in vitro stimulation with 94 preproinsulin (PPI) peptides. We were able to show that CD8(+) T cells contribute to a strong IFNgamma reactivity against PPI in human T1D. Further investigations defining epitope specificity, cytokine secretion, and cytotoxic capacity are important to clarify their role in T1D development.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Interferón gamma/metabolismo , Proinsulina/inmunología , Precursores de Proteínas/inmunología , Linfocitos T/inmunología , Células Presentadoras de Antígenos/inmunología , Células Presentadoras de Antígenos/metabolismo , Autoanticuerpos/sangre , Autoantígenos/sangre , Diabetes Mellitus Tipo 1/sangre , Ensayo de Inmunoadsorción Enzimática , Glutamato Descarboxilasa/sangre , Antígeno HLA-A2/sangre , Antígenos HLA-DQ/sangre , Antígeno HLA-DR3/sangre , Antígeno HLA-DR4/sangre , Humanos , Insulina/sangre , Interleucina-4/metabolismo , Leucocitos Mononucleares/inmunología , Leucocitos Mononucleares/metabolismo , Proteínas de la Membrana/sangre , Fragmentos de Péptidos/sangre , Proyectos Piloto , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Proteínas Tirosina Fosfatasas/sangre , Proteínas Tirosina Fosfatasas Clase 8 Similares a Receptores , Factores de Tiempo
15.
Ann N Y Acad Sci ; 958: 209-13, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12021108

RESUMEN

In human type 1 diabetes (T1D) autoantibodies to insulin precede clinical disease, while little is known about the contribution of insulin-specific T lymphocytes-in particular, T helper (Th) subsets. Here we have studied the in vivo primed cytokine response to preproinsulin in peripheral blood mononuclear cells (PBMCs) and two major Th cell subsets-CD45RO+ memory cells and CD45RA+ naive/resting cells-in 35 individuals with HLA-DRB1*04, DQB1*0302 diabetes risk marker: 12 patients with T1D, 12 autoantibody-positive (Ab+) individuals, and 11 healthy controls. Cytokine secretion (TNF-alpha, IFN-gamma, IL-2, IL-4, IL-5, and IL-10) was measured in the supernatants of the cultures stimulated with 21 overlapping preproinsulin peptides as well as proinsulin and insulin. In Ab+ individuals our results reveal higher IL-4 levels in CD45RO+ memory cells and higher IL-5 levels in CD45RA+ naive/resting cells, while higher IL-2 production was found in PBMCs. In contrast, in PBMCs of T1D patients higher IFN-gamma and IL-10 secretion was found. Our data delineate characteristic cytokine patterns in peripheral T lymphocytes from patients at different stages of the T1D development.


Asunto(s)
Diabetes Mellitus Tipo 1/inmunología , Proinsulina/farmacología , Precursores de Proteínas/farmacología , Células Th2/efectos de los fármacos , Células Th2/inmunología , Adolescente , Adulto , Células Cultivadas , Niño , Preescolar , Femenino , Antígenos HLA/inmunología , Humanos , Memoria Inmunológica/inmunología , Insulina , Interleucina-4/metabolismo , Interleucina-5/metabolismo , Antígenos Comunes de Leucocito/metabolismo , Masculino , Persona de Mediana Edad , Proteína Tirosina Fosfatasa no Receptora Tipo 1 , Células Th2/metabolismo
16.
Ann N Y Acad Sci ; 1005: 288-94, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14679078

RESUMEN

In type 1 diabetes, humoral and cell-mediated responses to insulin and proinsulin are detectable. Autoantibodies to insulin are associated with impending disease in young individuals and are used as predictive markers to determine disease risk. The aim of this study was to investigate whether different cytokine patterns of cellular reactivity to insulin might serve as additional specific markers of disease maturation and might improve disease prediction in individuals at risk. We correlated T and B cell responses to insulin in subjects with increased genetic risk (HLA-DRB1*04, DQB1*0302) for diabetes with or without islet autoantibodies (Ab+ subjects and controls, respectively) and HLA-matched patients. Peripheral blood mononuclear cells were stimulated with 15 overlapping proinsulin peptides (16-mer), and proinflammatory Th1 (IFNgamma) and anti-inflammatory Th2 (IL-4) cytokines were analyzed. We observed a simultaneous increase in IL-4 and IFNgamma secretion in early islet autoimmunity of Ab+ subjects, but not in insulin-treated T1D patients. Furthermore, the increase in IL-4 secretion in Ab+ subjects was associated with insulin autoantibody responses. There was no correlation of either IFNgamma or IL-4 secretion with insulin antibody responses in patients already treated with exogenous insulin. In conclusion, our findings reveal that quantification of cytokine responses to proinsulin in peripheral blood may prove to be a promising specific marker of diabetes progression and could, in addition to insulin autoantibodies, be used in the prediction of type 1 diabetes.


Asunto(s)
Linfocitos B/inmunología , Diabetes Mellitus Tipo 1/inmunología , Proinsulina/inmunología , Linfocitos T/inmunología , Adolescente , Adulto , Autoanticuerpos/sangre , Niño , Preescolar , Diabetes Mellitus Tipo 1/genética , Antígenos HLA-DQ/genética , Cadenas beta de HLA-DQ , Antígenos HLA-DR/genética , Cadenas HLA-DRB1 , Humanos , Persona de Mediana Edad
17.
Ann N Y Acad Sci ; 1037: 208-15, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15699519

RESUMEN

(Prepro)insulin is considered a central antigenic determinant in diabetic autoimmunity. Insulin has been used to modify diabetes development in NOD mice and prediabetic individuals. We have recently shown that (prepro)insulin can adversely promote diabetes development in murine type 1 diabetes. Based on these findings we have developed experimental autoimmune diabetes (EAD), a new mouse model characterized by (1) CD4(+)/CD8(+) insulitis, induced by (2) (prepro)insulin DNA vaccination, leading to (3) beta cell damage and insulin deficiency in (4) RIP-B7.1 transgenic mice (H-2(b)). EAD develops rapidly in 60-95% of mice after intramuscular, but not intradermal ("gene gun"), vaccination; and DNA plasmids expressing insulin or the insulin analogues glargine, aspart, and lispro are equally potent to induce EAD. Similar to NOD mice, diabetes is adoptively transferred into syngeneic recipients by spleen cell transplantation in a dose-dependent fashion. We have devised a two-stage concept of EAD in which T cell activation and expansion is driven by in vivo autoantigen expression, followed by islet damage that requires beta cell expression of costimulatory B7.1 for disease manifestation. Taken together, EAD is a novel, genetically defined animal model of type 1 diabetes suitable to analyze mechanisms and consequences of insulin-specific T cell autoimmunity.


Asunto(s)
Autoinmunidad , Diabetes Mellitus Experimental/inmunología , Insulina/análogos & derivados , Insulina/genética , Traslado Adoptivo , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/inmunología , Modelos Animales de Enfermedad , Hiperglucemia/etiología , Inyecciones Intramusculares , Insulina/deficiencia , Insulina/inmunología , Insulina Glargina , Insulina Lispro , Insulina de Acción Prolongada , Islotes Pancreáticos/patología , Subgrupos Linfocitarios/inmunología , Ratones , Ratones Transgénicos , Bazo/inmunología , Bazo/patología , Bazo/trasplante , Linfocitos T/inmunología , Factores de Tiempo , Trasplante Isogénico , Vacunación , Vacunas de ADN
18.
PLoS One ; 9(5): e98074, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24844227

RESUMEN

Fate determination for autoreactive T cells relies on a series of avidity-dependent interactions during T cell selection, represented by two general types of signals, one based on antigen expression and density during T cell development, and one based on genes that interpret the avidity of TCR interaction to guide developmental outcome. We used proinsulin-specific HLA class II tetramers to purify and determine transcriptional signatures for autoreactive T cells under differential selection in type 1 diabetes (T1D), in which insulin (INS) genotypes consist of protective and susceptible alleles that regulate the level of proinsulin expression in the thymus. Upregulation of steroid nuclear receptor family 4A (NR4A) and early growth response family genes in proinsulin-specific T cells was observed in individuals with susceptible INS-VNTR genotypes, suggesting a mechanism for avidity-dependent fate determination of the T cell repertoire in T1D. The NR4A genes act as translators of TCR signal strength that guide central and peripheral T cell fate decisions through transcriptional modification. We propose that maintenance of an NR4A-guided program in low avidity autoreactive T cells in T1D reflects their prior developmental experience influenced by proinsulin expression, identifying a pathway permissive for autoimmunity.


Asunto(s)
Autoinmunidad , Diabetes Mellitus Tipo 1/inmunología , Subgrupos de Linfocitos T/inmunología , Adulto , Autoantígenos/inmunología , Estudios de Casos y Controles , Femenino , Perfilación de la Expresión Génica , Genotipo , Humanos , Insulina/genética , Insulina/inmunología , Masculino , Persona de Mediana Edad , Proinsulina/genética , Proinsulina/inmunología , Proinsulina/metabolismo , Unión Proteica , Receptores de Antígenos de Linfocitos T , Especificidad del Receptor de Antígeno de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Adulto Joven
20.
J Vis Exp ; (25)2009 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19270641

RESUMEN

Major histocompatibility complex (MHC) class II tetramers allow the direct visualization of antigen specific CD4+ T cells by flow cytometry. This method relies on the highly specific interaction between peptide loaded MHC and the corresponding T-cell receptor. While the affinity of a single MHC/peptide molecule is low, cross-linking MHC/peptide complexes with streptavidin increases the avidity of the interaction, enabling their use as staining reagents. Because of the relatively low frequencies of CD4+ T cells (approximately 1 in 300,000 for a single specificity) this assay utilizes an in vitro amplification step to increase its threshold of detection. Mononuclear cells are purified from peripheral blood by Ficoll underlay. CD4+ cells are then separated by negative selection using biotinylated antibody cocktail and anti-biotin labeled magnetic beads. Using adherent cells from the CD4- cell fraction as antigen presenting cells, CD4+ T cells are expanded in media by adding an antigenic peptide and IL-2. The expanded cells are stained with the corresponding class II tetramer by incubating at 37 C for one hour and subsequently stained using surface antibodies such as anti-CD4, anti-CD3, and anti-CD25. After labeling, the cells can be directly analyzed by flow cytometry. The tetramer positive cells typically form a distinct population among the expanded CD4+ cells. Tetramer positive cells are usually CD25+ and often CD4 high. Because the level of background tetramer staining can vary, positive staining results should always be compared to the staining of the same cells with an irrelevant tetramer. Multiple variations of this basic assay are possible. Tetramer positive cells may be sorted for further phenotypic analysis, inclusion in ELISPOT or proliferation assays, or other secondary assays. Several groups have also demonstrated co-staining using tetramers and either anti-cytokine or anti-FoxP3 antibodies.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/análisis , Citometría de Flujo/métodos , Antígenos de Histocompatibilidad Clase II/química , Presentación de Antígeno , Antígenos de Histocompatibilidad Clase II/inmunología , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda