Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Chem Chem Phys ; 26(32): 21441-21452, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39081036

RESUMEN

The valence-shell dissociative photoionization of acetaldehyde has been investigated by means of the photoion photoelectron coincidence technique in conjunction with tuneable synchrotron radiation. The experimental results consist of threshold photoelectron spectra for the parent ion and for each fragment ion in the 10.2-19.5 eV photon energy range, along with (ion, e) kinetic energy coincidence diagrams obtained from measurements at fixed photon energies. The results are complemented by high-level ab initio calculations of potential energy curves as a function of the C-H bond distance. The nudged elastic band (NEB) method has been employed to connect the parent ion Franck-Condon region to the formation of the HCO+, CH3+ and CH4+ ion fragments. Appearance energies have been determined for six fragment ions with an improved accuracy, including two fragmentation channels, which to the best of our knowledge have not been reported previously, i.e. the formation of CH2CO+, lying at 13.10 ± 0.05 eV, and the formation of CH2+ at 15.1 ± 0.1 eV. Based on both experimental and theoretical results, the dissociation dynamics following ionization of acetaldehyde into the different fragmentation channels are discussed.

2.
J Phys Chem A ; 128(1): 182-190, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38118433

RESUMEN

We present a comprehensive theoretical study of valence-shell photoionization of the CO2 molecule by using the XCHEM methodology. This method makes use of a fully correlated molecular electronic continuum at a level comparable to that provided by state-of-the-art quantum chemistry packages in bound-state calculations. The calculated total and angularly resolved photoionization cross sections are presented and discussed, with particular emphasis on the series of autoionizing resonances that appear between the first and the fourth ionization thresholds. Ten series of Rydberg autoionizing states are identified, including some not previously reported in the literature, and their energy positions and widths are provided. This is relevant in the context of ongoing experimental and theoretical efforts aimed at observing in real-time (attosecond time scale) the autoionization dynamics in molecules.

3.
J Chem Phys ; 158(2): 024303, 2023 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-36641397

RESUMEN

We present an experimental and theoretical energy- and angle-resolved investigation on the non-dissociative photoionization dynamics of near-resonant, one-color, two-photon, single valence ionization of neutral O2 molecules. Using 9.3 eV femtosecond pulses produced via high harmonic generation and a 3-D momentum imaging spectrometer, we detect the photoelectrons and O2 + cations produced from one-color, two-photon ionization in coincidence. The measured and calculated photoelectron angular distributions show agreement, which indicates that a superposition of two intermediate electronic states is dominantly involved and that wavepacket motion on those near-resonantly populated intermediate states does not play a significant role in the measured two-photon ionization dynamics. Here, we find greater utility in the diabatic representation compared to the adiabatic representation, where invoking a single valence-character diabat is sufficient to describe the underlying two-photon ionization mechanism.

4.
Phys Rev Lett ; 128(6): 063001, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35213184

RESUMEN

Capturing electronic dynamics in real time has been the ultimate goal of attosecond science since its beginning. While for atomic targets the existing measurement techniques have been thoroughly validated, in molecules there are open questions due to the inevitable copresence of moving nuclei, which are not always mere spectators of the phototriggered electron dynamics. Previous work has shown that not only can nuclear motion affect the way electrons move in a molecule, but it can also lead to contradictory interpretations depending on the chosen experimental approach. In this Letter we investigate how nuclear motion affects and eventually distorts the electronic dynamics measured by using two of the most popular attosecond techniques, reconstruction of attosecond beating by interference of two-photon transitions and attosecond streaking. Both methods are employed, in combination with ab initio theoretical calculations, to retrieve photoionization delays in the dissociative ionization of H_{2}, H_{2}→H^{+}+H+e^{-}, in the region of the Q_{1} series of autoionizing states, where nuclear motion plays a prominent role. We find that the experimental reconstruction of attosecond beating by interference of two-photon transitions results are very sensitive to bond softening around the Q_{1} threshold (27.8 eV), even at relatively low infrared (IR) intensity (I_{0}∼1.4×10^{11} W/cm^{2}), due to the long duration of the probe pulse that is inherent to this technique. Streaking, on the other hand, seems to be a better choice to isolate attosecond electron dynamics, since shorter pulses can be used, thus reducing the role of bond softening. This conclusion is supported by very good agreement between our streaking measurements and the results of accurate theoretical calculations. Additionally, the streaking technique offers the necessary energy resolution to accurately retrieve the fast-oscillating phase of the photoionization matrix elements, an essential requirement for extending this technique to even more complicated molecular targets.

5.
Faraday Discuss ; 228: 378-393, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33566038

RESUMEN

We investigate how attosecond XUV pump/IR probe schemes can be used to exert control on the ionization dynamics of the hydrogen molecule. The aim is to play with all available experimental parameters in the problem, namely the XUV pump-IR probe delay, the energy and emission direction of the produced photo-ions, as well as combinations of them, to uncover control strategies that can lead to preferential electron ejection directions. We do so by accurately solving the time-dependent Schrödinger equation, with inclusion of both electronic and nuclear motions, as well as the coupling between them. We show that both the IR pulse and the nuclear motion can be used to break the molecular inversion symmetry, thus leading to asymmetric molecular-frame photoelectron angular distributions. The preferential electron emission direction can thus be tuned by varying the pump-probe delay, by choosing specific ranges of proton kinetic energies, or both. We expect that similar control strategies could be used in more complex molecules containing light nuclei.

6.
J Chem Theory Comput ; 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39395004

RESUMEN

The ab initio theoretical treatment of one-photon double photoionization processes has been limited to atoms and diatomic molecules by the challenges posed by large grid-based representations of the double ionized continuum wave function. To provide a path for extensions to polyatomics, an energy-adapted orbital basis approach is demonstrated that reduces the dimensions of such representations and simultaneously allows larger time steps in time-dependent computational descriptions of double ionization. Additionally, an algorithm that exploits the diagonal nature of the two-electron integrals in the grid basis and dramatically accelerates the transformation between grid and orbital representations is presented. Excellent agreement between the present results and benchmark theoretical calculations is found for H- and Be atoms, as well as the hydrogen molecule, including for the triply differential cross sections that relate the angular distribution and energy sharing of all of the particles in the molecular frame.

7.
Sci Adv ; 4(8): eaat3962, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30151427

RESUMEN

Autoionizing resonances are paradigmatic examples of two-path wave interferences between direct photoionization, which takes a few attoseconds, and ionization via quasi-bound states, which takes much longer. Time-resolving the evolution of these interferences has been a long-standing goal, achieved recently in the helium atom owing to progress in attosecond technologies. However, already for the hydrogen molecule, similar time imaging has remained beyond reach due to the complex interplay between fast nuclear and electronic motions. We show how vibrationally resolved photoelectron spectra of H2 allow one to reconstruct the associated subfemtosecond autoionization dynamics by using the ultrafast nuclear dynamics as an internal clock, thus forgoing ultrashort pulses. Our procedure should be general for autoionization dynamics in molecules containing light nuclei, which are ubiquitous in chemistry and biology.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda