Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Proc Biol Sci ; 291(2032): 20241640, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39353552

RESUMEN

Many variables in biological research-from body size to life-history timing to environmental characteristics-are measured continuously (e.g. body mass in kilograms) but analysed as categories (e.g. large versus small), which can lower statistical power and change interpretation. We conducted a mini-review of 72 recent publications in six popular ecology, evolution and behaviour journals to quantify the prevalence of categorization. We then summarized commonly categorized metrics and simulated a dataset to demonstrate the drawbacks of categorization using common variables and realistic examples. We show that categorizing continuous variables is common (31% of publications reviewed). We also underscore that predictor variables can and should be collected and analysed continuously. Finally, we provide recommendations on how to keep variables continuous throughout the entire scientific process. Together, these pieces comprise an actionable guide to increasing statistical power and facilitating large synthesis studies by simply leaving continuous variables alone. Overcoming the pitfalls of categorizing continuous variables will allow ecologists, ethologists and evolutionary biologists to continue making trustworthy conclusions about natural processes, along with predictions about their responses to climate change and other environmental contexts.


Asunto(s)
Evolución Biológica , Ecología , Ecología/métodos , Animales , Cambio Climático
2.
Proc Biol Sci ; 291(2021): 20232335, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38628129

RESUMEN

Many animals and plants have species-typical annual cycles, but individuals vary in their timing of life-history events. Individual variation in fur replacement (moult) timing is poorly understood in mammals due to the challenge of repeated observations and longitudinal sampling. We examined factors that influence variation in moult duration and timing among elephant seals (Mirounga angustirostris). We quantified the onset and progression of fur loss in 1178 individuals. We found that an exceptionally rapid visible moult (7 days, the shortest of any mammals or birds), and a wide range of moult start dates (spanning 6-10× the event duration) facilitated high asynchrony across individuals (only 20% of individuals in the population moulting at the same time). Some of the variation was due to reproductive state, as reproductively mature females that skipped a breeding season moulted a week earlier than reproductive females. Moreover, individual variation in timing and duration within age-sex categories far outweighed (76-80%) variation among age-sex categories. Individuals arriving at the end of the moult season spent 50% less time on the beach, which allowed them to catch up in their annual cycles and reduce population-level variance during breeding. These findings underscore the importance of individual variation in annual cycles.


Asunto(s)
Aves , Phocidae , Animales , Femenino , Muda , Reproducción , Mamíferos , Estaciones del Año
3.
Ecol Lett ; 26(5): 706-716, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36888564

RESUMEN

Although anthropogenic change is often gradual, the impacts on animal populations may be precipitous if physiological processes create tipping points between energy gain, reproduction or survival. We use 25 years of behavioural, diet and demographic data from elephant seals to characterise their relationships with lifetime fitness. Survival and reproduction increased with mass gain during long foraging trips preceding the pupping seasons, and there was a threshold where individuals that gained an additional 4.8% of their body mass (26 kg, from 206 to 232 kg) increased lifetime reproductive success three-fold (from 1.8 to 4.9 pups). This was due to a two-fold increase in pupping probability (30% to 76%) and a 7% increase in reproductive lifespan (6.0 to 6.4 years). The sharp threshold between mass gain and reproduction may explain reproductive failure observed in many species and demonstrates how small, gradual reductions in prey from anthropogenic disturbance could have profound implications for animal populations.


Asunto(s)
Mamíferos , Reproducción , Animales , Estaciones del Año
4.
Proc Biol Sci ; 288(1957): 20210325, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34428966

RESUMEN

Assessing the non-lethal effects of disturbance from human activities is necessary for wildlife conservation and management. However, linking short-term responses to long-term impacts on individuals and populations is a significant hurdle for evaluating the risks of a proposed activity. The Population Consequences of Disturbance (PCoD) framework conceptually describes how disturbance can lead to changes in population dynamics, and its real-world application has led to a suite of quantitative models that can inform risk assessments. Here, we review PCoD models that forecast the possible consequences of a range of disturbance scenarios for marine mammals. In so doing, we identify common themes and highlight general principles to consider when assessing risk. We find that, when considered holistically, these models provide valuable insights into which contextual factors influence a population's degree of exposure and sensitivity to disturbance. We also discuss model assumptions and limitations, identify data gaps and suggest future research directions to enable PCoD models to better inform risk assessments and conservation and management decisions. The general principles explored can help wildlife managers and practitioners identify and prioritize the populations most vulnerable to disturbance and guide industry in planning activities that avoid or mitigate population-level effects.


Asunto(s)
Animales Salvajes , Actividades Humanas , Animales , Humanos , Dinámica Poblacional
5.
Proc Biol Sci ; 288(1947): 20202817, 2021 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-33726591

RESUMEN

Seasonal resource pulses can have enormous impacts on species interactions. In marine ecosystems, air-breathing predators often drive their prey to deeper waters. However, it is unclear how ephemeral resource pulses such as near-surface phytoplankton blooms alter the vertical trade-off between predation avoidance and resource availability in consumers, and how these changes cascade to the diving behaviour of top predators. We integrated data on Weddell seal diving behaviour, diet stable isotopes, feeding success and mass gain to examine shifts in vertical foraging throughout ice break-out and the resulting phytoplankton bloom each year. We also tested hypotheses about the likely location of phytoplankton bloom origination (advected or produced in situ where seals foraged) based on sea ice break-out phenology and advection rates from several locations within 150 km of the seal colony. In early summer, seals foraged at deeper depths resulting in lower feeding rates and mass gain. As sea ice extent decreased throughout the summer, seals foraged at shallower depths and benefited from more efficient energy intake. Changes in diving depth were not due to seasonal shifts in seal diets or horizontal space use and instead may reflect a change in the vertical distribution of prey. Correspondence between the timing of seal shallowing and the resource pulse was variable from year to year and could not be readily explained by our existing understanding of the ocean and ice dynamics. Phytoplankton advection occurred faster than ice break-out, and seal dive shallowing occurred substantially earlier than local break-out. While there remains much to be learned about the marine ecosystem, it appears that an increase in prey abundance and accessibility via shallower distributions during the resource pulse could synchronize life-history phenology across trophic levels in this high-latitude ecosystem.


Asunto(s)
Ecosistema , Phocidae , Animales , Conducta Alimentaria , Océanos y Mares , Conducta Predatoria , Estaciones del Año
6.
J Gen Virol ; 99(4): 549-557, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29469687

RESUMEN

Papillomaviridae is a diverse family of circular, double-stranded DNA (dsDNA) viruses that infect a broad range of mammalian, avian and fish hosts. While papillomaviruses have been characterized most extensively in humans, the study of non-human papillomaviruses has contributed greatly to our understanding of their pathogenicity and evolution. Using high-throughput sequencing approaches, we identified 7 novel papillomaviruses from vaginal swabs collected from 81 adult female Weddell seals (Leptonychotes weddellii) in the Ross Sea of Antarctica between 2014-2017. These seven papillomavirus genomes were amplified from seven individual seals, and six of the seven genomes represented novel species with distinct evolutionary lineages. This highlights the diversity of papillomaviruses among the relatively small number of Weddell seal samples tested. Viruses associated with large vertebrates are poorly studied in Antarctica, and this study adds information about papillomaviruses associated with Weddell seals and contributes to our understanding of the evolutionary history of papillomaviruses.


Asunto(s)
Papillomaviridae/aislamiento & purificación , Phocidae/virología , Infecciones Tumorales por Virus/veterinaria , Secuencia de Aminoácidos , Animales , Regiones Antárticas , Femenino , Variación Genética , Genoma Viral , Datos de Secuencia Molecular , Papillomaviridae/química , Papillomaviridae/clasificación , Papillomaviridae/genética , Filogenia , Infecciones Tumorales por Virus/virología , Vagina/virología , Proteínas Virales/química , Proteínas Virales/genética
7.
Proc Biol Sci ; 285(1878)2018 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-29769361

RESUMEN

Birds and mammals have developed numerous strategies for replacing worn feathers and hair. Moulting usually occurs on an annual basis; however, moults that take place twice per year (biannual moults) also occur. Here, we review the forces driving the evolution of various moult strategies, focusing on the special case of the complete biannual moult as a convergence of selection pressures across birds and mammals. Current evidence suggests that harsh environmental conditions or seasonality (e.g. larger variation in temperatures) drive evolution of a biannual moult. In turn, the biannual moult can respond to secondary selection that results in phenotypic alteration such as colour changes for mate choice dynamics (sexual selection) or camouflage requirements (natural selection). We discuss the contributions of natural and sexual selection to the evolution of biannual moulting strategies in the contexts of energetics, niche selection, functionality and physiological mechanisms. Finally, we suggest that moult strategies are directly related to species niche because environmental attributes drive the utility (e.g. thermoregulation, camouflage, social dynamics) of the hair or feathers. Functional efficiency of moult may be undermined if the pace of evolution fails to match that of the changing climate. Thus, future research should seek to understand the plasticity of moult duration and phenology, especially in the context of annual cycles.


Asunto(s)
Evolución Biológica , Aves/crecimiento & desarrollo , Mamíferos/crecimiento & desarrollo , Muda , Animales , Plumas/crecimiento & desarrollo , Cabello/crecimiento & desarrollo
8.
Rapid Commun Mass Spectrom ; 30(9): 1115-22, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-27060839

RESUMEN

RATIONALE: Mixing models are a common method for quantifying the contribution of prey sources to the diet of an individual using stable isotope analysis; however, these models rely upon a known trophic discrimination factor (hereafter, TDF) that results from fractionation between prey and animal tissues. Quantifying TDFs in captive animals is ideal, because diet is controlled and the proportional contributions and isotopic values of all prey items are known. METHODS: To calculate TDFs for the Hawaiian monk seal, northern elephant seal, bearded seal, ringed seal, spotted seal, harbor seal, and California sea lion, we obtained whiskers, serum, plasma, red blood cells, and prey items from nine captive individuals. We obtained δ(13) C and δ(15) N values using continuous-flow isotope-ratio mass spectrometry. The average δ(13) C and δ(15) N values from bulk and lipid-corrected prey from the diet were subtracted from the δ(13) C and δ(15) N values of each blood and whisker sample to calculate tissue-specific TDFs for each individual (∆(13) C or ∆(15) N). RESULTS: The ∆(13) C values ranged from +1.7 to +3.2‰ (bulk prey) and from +0.8 to +1.9‰ (lipid-corrected prey) for the various blood components, and from +3.9 to +4.6‰ (bulk prey) or +2.6 to +3.9‰ (lipid-corrected prey) for whiskers. The ∆(15) N values ranged from +2.2 to +4.3‰ for blood components and from +2.6 to +4.0‰ for whiskers. The TDFs tended to group by tissue, with whiskers having greater ∆(13) C values than blood components. In contrast, the ∆(15) N values were greater in serum and plasma than in red blood cells and whiskers. CONCLUSIONS: By providing the first TDF values for five seal species (family Phocidae) and one otariid species (family Otariidae), our study facilitates more accurate mixing models for these species. These values are particularly important for critically endangered Hawaiian monk seals and the three Arctic seal species (bearded, ringed, and spotted) that are faced with a rapidly changing environment.


Asunto(s)
Leones Marinos/fisiología , Phocidae/fisiología , Alimentación Animal/análisis , Animales , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Conducta Alimentaria , Cadena Alimentaria , Espectrometría de Masas , Isótopos de Nitrógeno/análisis , Isótopos de Nitrógeno/metabolismo , Estado Nutricional , Leones Marinos/sangre , Phocidae/sangre
9.
Trends Ecol Evol ; 39(3): 213-216, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38320928

RESUMEN

Fieldwork is crucial for science but poses heightened risks of gender-based harassment and assault. Current practices prioritize post-incident reporting, despite the demonstrated potential of preventive approaches. We recommend proactive practices, training strategies, and systemic policy changes to build safe and inclusive fieldwork settings from the outset.


Asunto(s)
Acoso Sexual , Acoso Sexual/prevención & control
10.
R Soc Open Sci ; 11(1): 230666, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38179081

RESUMEN

Understanding the ontogeny of diving behaviour in marine megafauna is crucial owing to its influence on foraging success, energy budgets, and mortality. We compared the ontogeny of diving behaviour in two closely related species-northern elephant seals (Mirounga angustirostris, n = 4) and southern elephant seals (Mirounga leonina, n = 9)-to shed light on the ecological processes underlying migration. Although both species have similar sizes and behaviours as adults, we discovered that juvenile northern elephant seals have superior diving development, reaching 260 m diving depth in just 30 days, while southern elephant seals require 160 days. Similarly, northern elephant seals achieve dive durations of approximately 11 min on their first day of migration, while southern elephant seals take 125 days. The faster physiological maturation of northern elephant seals could be related to longer offspring dependency and post-weaning fast durations, allowing them to develop their endogenous oxygen stores. Comparison across both species suggests that weaned seal pups face a trade-off between leaving early with higher energy stores but poorer physiological abilities or leaving later with improved physiology but reduced fat stores. This trade-off might be influenced by their evolutionary history, which shapes their migration behaviours in changing environments over time.

11.
Sci Rep ; 14(1): 523, 2024 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-38191560

RESUMEN

Fieldwork is a critical tool for scientific research, particularly in applied disciplines. Yet fieldwork is often unsafe, especially for members of historically marginalized groups and people whose presence in scientific spaces threatens traditional hierarchies of power, authority, and legitimacy. Research is needed to identify interventions that prevent sexual harassment and assault from occurring in the first place. We conducted a quasi-experiment assessing the impacts of a 90-min interactive training on field-based staff in a United States state government agency. We hypothesized that the knowledge-based interventions, social modeling, and mastery experiences included in the training would increase participants' sexual harassment and assault prevention knowledge, self-efficacy, behavioural intention, and behaviour after the training compared to a control group of their peers. Treatment-control and pre-post training survey data indicate that the training increased participants' sexual harassment and assault prevention knowledge and prevention self-efficacy, and, to a lesser extent, behavioural intention. These increases persisted several months after the training for knowledge and self-efficacy. While we did not detect differences in the effect of the training for different groups, interestingly, post-hoc tests indicated that women and members of underrepresented racial groups generally scored lower compared to male and white respondents, suggesting that these groups self-assess their own capabilities differently. Finally, participants' likelihood to report incidents increased after the training but institutional reports remained low, emphasizing the importance of efforts to transform reporting systems and develop better methods to measure bystander actions. These results support the utility of a peer-led interactive intervention for improving workplace culture and safety in scientific fieldwork settings. PROTOCOL REGISTRATION: "The stage 1 protocol for this Registered Report was accepted in principle on August 24, 2022. The protocol, as accepted by the journal, can be found at: https://doi.org/10.6084/m9.figshare.21770165 .


Asunto(s)
Acoso Sexual , Humanos , Femenino , Masculino , Acoso Sexual/prevención & control , Procesos de Grupo , Instituciones de Salud , Intención , Conocimiento
12.
Virology ; 594: 110064, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38522135

RESUMEN

Papillomaviruses (family Papillomaviridae) are non-enveloped, circular, double-stranded DNA viruses known to infect squamous and mucosal epithelial cells. In the family Papillomaviridae there are 53 genera and 133 viral species whose members infect a variety of mammalian, avian, reptilian, and fish species. Within the Antarctic context, papillomaviruses (PVs) have been identified in Adélie penguins (Pygoscelis adeliae, 2 PVs), Weddell seals (Leptonychotes weddellii, 7 PVs), and emerald notothen (Trematomus bernacchii, 1 PV) in McMurdo Sound and Ross Island in eastern Antarctica. Here we identified 13 diverse PVs from buccal swabs of Antarctic fur seals (Arctocephalus gazella, 2 PVs) and leopard seal (Hydrurga leptonyx, 3 PVs) in western Antarctica (Antarctic Peninsula), and vaginal and nasal swabs of Weddell seals (8 PVs) in McMurdo Sound. These PV genomes group into four genera representing 11 new papillomavirus types, of which five are from two Antarctic fur seals and a leopard seal and six from Weddell seals.


Asunto(s)
Lobos Marinos , Phocidae , Animales , Femenino , Regiones Antárticas , Aves , Papillomaviridae/genética
13.
Nat Ecol Evol ; 8(4): 686-694, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383849

RESUMEN

Populations and species are threatened by human pressure, but their fate is variable. Some depleted populations, such as that of the northern elephant seal (Mirounga angustirostris), recover rapidly even when the surviving population was small. The northern elephant seal was hunted extensively and taken by collectors between the early 1800s and 1892, suffering an extreme population bottleneck as a consequence. Recovery was rapid and now there are over 200,000 individuals. We sequenced 260 modern and 8 historical northern elephant seal nuclear genomes to assess the impact of the population bottleneck on individual northern elephant seals and to better understand their recovery. Here we show that inbreeding, an increase in the frequency of alleles compromised by lost function, and allele frequency distortion, reduced the fitness of breeding males and females, as well as the performance of adult females on foraging migrations. We provide a detailed investigation of the impact of a severe bottleneck on fitness at the genomic level and report on the role of specific gene systems.


Asunto(s)
Genómica , Phocidae , Masculino , Femenino , Humanos , Animales , Secuencia de Bases , Phocidae/genética
14.
Trends Ecol Evol ; 2024 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-39472251

RESUMEN

Instruments attached to animals ('biologgers') have facilitated extensive discoveries about the patterns, causes, and consequences of animal behavior. Here, we present examples of how biologging can deepen our fundamental understanding of ecosystems and our applied understanding of global change impacts by enabling tests of ecological theory. Applying the iterative process of science to biologging has enabled a diverse set of insights, including social and experiential learning in long-distance migrants, state-dependent risk aversion in foraging predators, and resource abundance driving movement across taxa. Now, biologging is poised to tackle questions and refine ecological theories at increasing levels of complexity by integrating measurements from numerous individuals, merging datasets from multiple species and their environments, and spanning disciplines, including physiology, behavior and demography.

15.
Integr Comp Biol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982258

RESUMEN

Trade-offs resulting from the high demand of offspring production are a central focus of many subdisciplines within the field of biology. Yet, despite the historical and current interest on this topic, large gaps in our understanding of whole-organism trade-offs that occur in reproducing individuals remain, particularly as it relates to the nuances associated with female reproduction. This volume of Integrative and Comparative Biology (ICB) contains a series of papers that focus on reviewing trade-offs from the female-centered perspective of biology (i.e., a perspective that places female reproductive biology at the center of the topic being investigated or discussed). These papers represent some of the work showcased during our symposium held at the 2024 meeting of the Society for Integrative and Comparative Biology (SICB) in Seattle, Washington. In this roundtable discussion, we use a question-and-answer format to capture the diverse perspectives and voices involved in our symposium. We hope that the dialogue featured in this discussion will be used to motivate researchers interested in understanding trade-offs in reproducing females and provide guidance on future research endeavors.

16.
Virus Evol ; 9(1): vead035, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37325085

RESUMEN

Anelloviruses are highly prevalent in diverse mammals, including humans, but so far have not been linked to any disease and are considered to be part of the 'healthy virome'. These viruses have small circular single-stranded DNA (ssDNA) genomes and encode several proteins with no detectable sequence similarity to proteins of other known viruses. Thus, anelloviruses are the only family of eukaryotic ssDNA viruses currently not included in the realm Monodnaviria. To gain insights into the provenance of these enigmatic viruses, we sequenced more than 250 complete genomes of anelloviruses from nasal and vaginal swab samples of Weddell seal (Leptonychotes weddellii) from Antarctica and a fecal sample of grizzly bear (Ursus arctos horribilis) from the USA and performed a comprehensive family-wide analysis of the signature anellovirus protein ORF1. Using state-of-the-art remote sequence similarity detection approaches and structural modeling with AlphaFold2, we show that ORF1 orthologs from all Anelloviridae genera adopt a jelly-roll fold typical of viral capsid proteins (CPs), establishing an evolutionary link to other eukaryotic ssDNA viruses, specifically, circoviruses. However, unlike CPs of other ssDNA viruses, ORF1 encoded by anelloviruses from different genera display remarkable variation in size, due to insertions into the jelly-roll domain. In particular, the insertion between ß-strands H and I forms a projection domain predicted to face away from the capsid surface and function at the interface of virus-host interactions. Consistent with this prediction and supported by recent experimental evidence, the outermost region of the projection domain is a mutational hotspot, where rapid evolution was likely precipitated by the host immune system. Collectively, our findings further expand the known diversity of anelloviruses and explain how anellovirus ORF1 proteins likely diverged from canonical jelly-roll CPs through gradual augmentation of the projection domain. We suggest assigning Anelloviridae to a new phylum, 'Commensaviricota', and including it into the kingdom Shotokuvirae (realm Monodnaviria), alongside Cressdnaviricota and Cossaviricota.

17.
Science ; 380(6642): 260-265, 2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37079694

RESUMEN

Sleep is a crucial part of the daily activity patterns of mammals. However, in marine species that spend months or entire lifetimes at sea, the location, timing, and duration of sleep may be constrained. To understand how marine mammals satisfy their daily sleep requirements while at sea, we monitored electroencephalographic activity in wild northern elephant seals (Mirounga angustirostris) diving in Monterey Bay, California. Brain-wave patterns showed that seals took short (less than 20 minutes) naps while diving (maximum depth 377 meters; 104 sleeping dives). Linking these patterns to accelerometry and the time-depth profiles of 334 free-ranging seals (514,406 sleeping dives) revealed a North Pacific sleepscape in which seals averaged only 2 hours of sleep per day for 7 months, rivaling the record for the least sleep among all mammals, which is currently held by the African elephant (about 2 hours per day).


Asunto(s)
Encéfalo , Phocidae , Sueño , Animales , Encéfalo/fisiología , Phocidae/fisiología , Factores de Tiempo
18.
Front Physiol ; 13: 917976, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35874548

RESUMEN

What new questions could ecophysiologists answer if physio-logging research was fully reproducible? We argue that technical debt (computational hurdles resulting from prioritizing short-term goals over long-term sustainability) stemming from insufficient cyberinfrastructure (field-wide tools, standards, and norms for analyzing and sharing data) trapped physio-logging in a scientific silo. This debt stifles comparative biological analyses and impedes interdisciplinary research. Although physio-loggers (e.g., heart rate monitors and accelerometers) opened new avenues of research, the explosion of complex datasets exceeded ecophysiology's informatics capacity. Like many other scientific fields facing a deluge of complex data, ecophysiologists now struggle to share their data and tools. Adapting to this new era requires a change in mindset, from "data as a noun" (e.g., traits, counts) to "data as a sentence", where measurements (nouns) are associate with transformations (verbs), parameters (adverbs), and metadata (adjectives). Computational reproducibility provides a framework for capturing the entire sentence. Though usually framed in terms of scientific integrity, reproducibility offers immediate benefits by promoting collaboration between individuals, groups, and entire fields. Rather than a tax on our productivity that benefits some nebulous greater good, reproducibility can accelerate the pace of discovery by removing obstacles and inviting a greater diversity of perspectives to advance science and society. In this article, we 1) describe the computational challenges facing physio-logging scientists and connect them to the concepts of technical debt and cyberinfrastructure, 2) demonstrate how other scientific fields overcame similar challenges by embracing computational reproducibility, and 3) present a framework to promote computational reproducibility in physio-logging, and bio-logging more generally.

19.
Curr Biol ; 32(4): R156-R157, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35231406

RESUMEN

Many marine animals migrate between foraging areas and reproductive sites, often timing the return migration with extreme precision. In theory, the decision to return should reflect energy acquisition at foraging areas, energetic costs associated with transit, and timing arrival for successful reproduction. For long-distance migrations to be successful, animals must integrate 'map' information to assess where they are relative to their reproductive site as well as 'calendar' information to know when to initiate the return migration given their distance from home1. Elephant seals, Mirounga angustirostris, migrate thousands of kilometers from reproductive sites to open ocean foraging areas (Figure 1A), yet return within a narrow window of time to specific beaches2. Each year, pregnant female elephant seals undertake a ∼240-day, 10,000 km foraging migration across the Northeast Pacific Ocean before returning to their breeding beaches, where they give birth 5 days after arriving2. We found that the seals' abilities to adjust the timing of their return migration is based on the perception of space and time, which further elucidates the mechanisms behind their astonishing navigational feats3.


Asunto(s)
Phocidae , Animales , Femenino , Océano Pacífico , Embarazo , Reproducción
20.
Ecol Evol ; 11(21): 14405-14415, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34765115

RESUMEN

Mammals must carefully balance rest with other behaviors that influence fitness (e.g., foraging, finding a mate) while minimizing predation risk. However, factors influencing resting strategies and the degree to which resting strategies are driven by the activities of predators and/or prey remain largely unknown. Our goal was to examine how mammalian resting strategies varied with trophic level, body mass, and habitat. We reviewed findings from 127 publications and classified the resting strategies of terrestrial and aquatic mammalian species into three categories: social (e.g., resting in groups), temporal (e.g., resting during the day), or spatial (e.g., resting in burrows). Temporal strategies were most common (54% of cases), but the prevalence of strategies varied with body mass and among trophic levels. Specifically, lower trophic levels and smaller species such as rodents and lagomorphs used more spatial and social resting strategies, whereas top predators and larger species used mostly temporal resting strategies. Resting strategies also varied among habitat types (e.g., rainforest vs. grassland), but this was primarily because closely related species shared both habitats and resting strategies. Human presence also affected resting strategies at all trophic levels but most strongly influenced top predators through shifts in rest timing. Human-induced behavioral changes in rest patterns cascade to modify behaviors across multiple trophic levels. These findings advance our fundamental understanding of natural history and ecology in wild animals and provide a roadmap for future comparative studies.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda