RESUMEN
Epigenetic modifications, including aberrant DNA methylation occurring at the promoters of oncogenes and oncosuppressor genes and histone modifications, can contribute to carcinogenesis. Aberrant methylation mediated by histone methylatransferases, alongside histones, can affect methylation of proteins involved in the regulation of pro-survival pathways such as JAK/STAT and contribute to their activation. In this study, we used DNA or histone demethylating agents, 5-Azacytidine (5-AZA) or DS-3201 (valemetostat), respectively, to treat primary effusion lymphoma (PEL) cells, alone or in combination with AG490, a Signal transducer and activator of transcription 3 (STAT3) inhibitor. Cell viability was investigated by trypan blue assay and FACS analysis. The molecular changes induced by 5-AZA and/or AG490 treatments were investigated by Western blot analysis, while cytokine release by PEL cells treated by these drugs was evaluated by Luminex. Statistical analyses were performed with Graphpad Prism® software (version 9) and analyzed by Student's t test or a nonparametric one-way ANOVA test. The results obtained in this study suggest that 5-AZA upregulated molecules that inhibit STAT3 tyrosine phosphorylation, namely Suppressor of Cytokine Signaling 3 (SOCS3) and tyrosine-protein phosphatase non-receptor type (PTPN) 6/Src homology region 2 domain-containing phosphatase-1 (SHP-1), reducing STAT3 activation and downregulating several STAT3 pro-survival targets in PEL cells. As this lymphoma is highly dependent on the constitutive activation of STAT3, 5-AZA impaired PEL cell survival, and when used in combination with AG490 JAK2/STAT3 inhibitor, it potentiated its cytotoxic effect. Differently from 5-AZA, the inhibition of the EZH1/2 histone methyltransferase by DS-3201, reported to contribute to STAT3 activation in other cancers, slightly affected STAT3 phosphorylation or survival in PEL cells, either alone or in combination with AG490. This study suggests that 5-AZA, by upregulating the expression level of SOCS3 and PTPN6/SHP1, reduced STAT3 activation and improved the outcome of treatment targeting this transcription factor in PEL cells.
RESUMEN
Epigenetic changes are common in cancer and include aberrant DNA methylation and histone modifications, including both acetylation or methylation. DNA methylation in the promoter regions and histone deacetylation are usually accompanied by gene silencing, and may lead to the suppression of tumor suppressors in cancer cells. An interaction between epigenetic pathways has been reported that could be exploited to more efficiently target aggressive cancer cells, particularly those against which current treatments usually fail, such as pancreatic cancer. In this study, we explored the possibility to combine the DNA demethylating agent 5-AZA with HDAC inhibitor SAHA to treat pancreatic cancer cell lines, focusing on the acetylation of mutp53 and the consequences on its stability, as well as on the interaction of this protein with c-myc and BRCA-1, key molecules in cancer survival. The results obtained suggest that SAHA/5-AZA combination was more effective than single treatments to promote the degradation of mutp53, to upregulate p21 and downregulate c-Myc and BRCA-1, thus increasing DNA damage and cytotoxicity in pancreatic cancer cells.
Asunto(s)
Proteína BRCA1 , Inhibidor p21 de las Quinasas Dependientes de la Ciclina , Regulación Neoplásica de la Expresión Génica , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-myc , Proteína p53 Supresora de Tumor , Vorinostat , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Acetilación/efectos de los fármacos , Línea Celular Tumoral , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Vorinostat/farmacología , Proteína BRCA1/metabolismo , Proteína BRCA1/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Azacitidina/farmacología , Regulación hacia Abajo/efectos de los fármacos , Proteolisis/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos , Inhibidores de Histona Desacetilasas/farmacologíaRESUMEN
NFE2L2 and STAT3 are key pro-survival molecules, and thus, their targeting may represent a promising anti-cancer strategy. In this study, we found that a positive feedback loop occurred between them and provided evidence that their concomitant inhibition efficiently impaired the survival of PEL cells, a rare, aggressive B cell lymphoma associated with the gammaherpesvirus KSHV and often also EBV. At the molecular level, we found that NFE2L2 and STAT3 converged in the regulation of several pro-survival molecules and in the activation of processes essential for the adaption of lymphoma cells to stress. Among those, STAT3 and NFE2L2 promoted the activation of pathways such as MAPK3/1 and MTOR that positively regulate protein synthesis, sustained the antioxidant response, expression of molecules such as MYC, BIRC5, CCND1, and HSP, and allowed DDR execution. The findings of this study suggest that the concomitant inhibition of NFE2L2 and STAT3 may be considered a therapeutic option for the treatment of this lymphoma that poorly responds to chemotherapies.
Asunto(s)
Autofagia , Linfoma de Células B , Humanos , Linfocitos/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismoRESUMEN
Reactive oxygen species (ROS) and DNA repair, respectively, promote and limit oncogenic transformation of B cells driven by Epstein-Barr virus (EBV). We have previously shown that EBV infection reduced autophagy in primary B lymphocytes and enhanced ROS and interleukin 6 (IL-6) release, promoting B-cell proliferation and immortalization. In this study, we explored the role of p62/SQSTM1, accumulated as a consequence of autophagy reduction in EBV-infected B lymphocytes, and found that it exerted a growth-suppressive effect in these cells. At the molecular level, we found that p62 counteracted IL-6 production and ROS increase by interacting with NRF2 and promoting mitophagy. Moreover, p62/NRF2 axis sustained the expression level of H2AX and ataxia-telangiectasia mutated (ATM), whose activation has been shown to have growth-suppressive effects during the first steps of EBV infection, before latency is established. In conclusion, this study shows for the first time that the accumulation of p62 and the activation of p62/axis counteracted EBV-driven proliferation of primary B lymphocytes.
Asunto(s)
Infecciones por Virus de Epstein-Barr , Herpesvirus Humano 4 , Antiinflamatorios , Antioxidantes , Linfocitos B/metabolismo , Proliferación Celular , Humanos , Interleucina-6/metabolismo , Mitofagia , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína Sequestosoma-1/genética , Proteína Sequestosoma-1/metabolismoRESUMEN
Cancer cells, particularly MM, that are highly secretory cells, and PEL cells that harbor KSHV, are characterized by high level of stress to which they adapt by activating DDR, UPR and autophagy. It is known that UPR sensors may affect DDR, but whether DDR manipulation influences UPR is less known. In this study, we found an intricate interplay between these responses. Indeed, PARP and CHK1 inhibition by AZD2461 and UCN-01, by downregulating c-Myc, reduced the expression of XBP1s, constitutively expressed in these cells, and upregulated CHOP. Interestingly, given the role of XBP1s in regulating DDR, BRCA-1 expression level was reduced, exacerbating DNA damage. Finally, DDR/UPR interplay activated a pro-survival autophagy via PERK/eIF2alpha axis in MM and IRE1alpha/JNK axis in PEL cells, since in the latter case PERK/eIF2alpha activation could be prevented by KSHV that, as other herpesviruses, tries to avoid the blocks of protein translation that this pathway may induce.
Asunto(s)
Endorribonucleasas , Factor 2 Eucariótico de Iniciación , Proteína 1 de Unión a la X-Box/metabolismo , Autofagia , Daño del ADN , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Proteínas Serina-Treonina Quinasas , Respuesta de Proteína Desplegada , eIF-2 Quinasa/metabolismoRESUMEN
Colon cancer is one of the most common cancers, currently treated with traditional chemotherapies or alternative therapies. However, these treatments are still not enough effective and induce several side effects, so that the search of new therapeutic strategies is needed. The use of Poly-(ADP-ribose)-polymerase (PARP) inhibitors, although originally approved against BRCA-1 or BRCA-2 mutated cancers, has been extended, particularly in combination with other treatments, to cure cancers that do not display defects in DNA repair signaling pathways. The role of p53 oncosuppressor in the regulating the outcome of PARP inhibitor treatment remains an open issue. In this study, we addressed this topic by using a well-tolerated PARP 1/2/3 inhibitor, namely AZD2461, against colon cancer cell lines with different p53 status. We found that AZD2461 reduced cell proliferation in wtp53 and p53-/- cancer cells by increasing ROS and DNA damage, while R273H mutant (mut) p53 counteracted these effects. Moreover, AZD2461 improved the reduction of cell proliferation by low dose radiation (IR) in wtp53 cancer cells, in which a down-regulation of BRCA-1 occurred. AZD2461 did not affect cell proliferation of mutp53 colon cancer cells also in combination with low dose radiation, suggesting that only wt p53 or p53 null colon cancer cells could benefit AZD2461 treatment.
Asunto(s)
Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Poli(ADP-Ribosa) Polimerasa-1/genética , Proteína p53 Supresora de Tumor/genética , Línea Celular Tumoral , Neoplasias del Colon/patología , Daño del ADN/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ftalazinas/farmacología , Piperidinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacologíaRESUMEN
HDAC inhibitors (HDACi) represent promising anti-cancer treatments, as the acetylation of histone and non-histone proteins is often dysregulated in cancer and contributes to cancer onset and progression. HDACi have been also reported to increase the cytotoxicity of DNA-damaging agents, such as radiation or cisplatin. In this study, we found that TSA and, even more effectively, VPA synergized with AZD2461, PARP1, 2 and 3 inhibitor (PARPi) to induce DNA damage and reduce pancreatic cancer cell survival. At a molecular level, VPA and TSA down-regulated CHK1 and RAD51, which is correlated with the interruption of the cross-talk between mutp53 and HSP70. Moreover, VPA and to a lesser extent TSA reactivated wtp53 in these cells, which contributed to CHK1 and RAD51 reduction. These findings suggest that the combination of HDACi and PARPi might improve the treatment of pancreatic cancer, which remains one of the most aggressive and therapy-resistant cancers.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Benzopiranos/farmacología , Regulación hacia Abajo/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Fenoles/farmacología , Ftalazinas/farmacología , Piperidinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Daño del ADN/efectos de los fármacos , Doxorrubicina/farmacología , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Podofilotoxina/farmacología , Recombinasa Rad51/metabolismo , Neoplasias PancreáticasRESUMEN
It is emerging that targeting the adaptive functions of Unfolded Protein Response (UPR) may represent a promising anti-cancer therapeutic approach. This is particularly relevant for B-cell lymphomas, characterized by a high level of constitutive stress due to high c-Myc expression. In this study, we found that IRE1α/XBP1 axis inhibition exerted a stronger cytotoxic effect compared to the inhibition of the other two UPR sensors, namely PERK and ATF6, in Burkitt lymphoma (BL) cells, in correlation with c-Myc downregulation. Interestingly, such an effect was more evident in Epstein-Barr virus (EBV)-negative BL cells or those cells expressing type I latency compared to type III latency BL cells. The other interesting finding of this study was that the inhibition of IRE1α/XBP1 downregulated BRCA-1 and RAD51 and potentiated the cytotoxicity of PARP inhibitor AZD2661 against BL cells and also against Primary Effusion Lymphoma (PEL), another aggressive B-cell lymphoma driven by c-Myc and associated with gammaherpesvirus infection. These results suggest that combining the inhibition of UPR sensors, particularly IRE1α/XBP1 axis, and molecules involved in DDR, such as PARP, could offer a new therapeutic opportunity for treating aggressive B-cell lymphomas such as BL and PEL.
Asunto(s)
Linfoma de Burkitt , Infecciones por Virus de Epstein-Barr , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Respuesta de Proteína Desplegada , Linfoma de Burkitt/tratamiento farmacológico , Linfoma de Burkitt/virología , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Infecciones por Virus de Epstein-Barr/tratamiento farmacológico , Herpesvirus Humano 4/fisiología , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Serina-Treonina Quinasas/genética , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismoRESUMEN
Wild-type (wt) p53 and mutant forms (mutp53) play a key but opposite role in carcinogenesis. wtP53 acts as an oncosuppressor, preventing oncogenic transformation, while mutp53, which loses this property, may instead favor this process. This suggests that a better understanding of the mechanisms activating wtp53 while inhibiting mutp53 may help to design more effective anti-cancer treatments. In this review, we examine possible PTMs with which both wt- and mutp53 can be decorated and discuss how their manipulation could represent a possible strategy to control the stability and function of these proteins, focusing in particular on mutp53. The impact of ubiquitination, phosphorylation, acetylation, and methylation of p53, in the context of several solid and hematologic cancers, will be discussed. Finally, we will describe some of the recent studies reporting that wt- and mutp53 may influence the expression and activity of enzymes responsible for epigenetic changes such as acetylation, methylation, and microRNA regulation and the possible consequences of such changes.
RESUMEN
The p53 protein is the master regulator of cellular integrity, primarily due to its tumor-suppressing functions. Approximately half of all human cancers carry mutations in the TP53 gene, which not only abrogate the tumor-suppressive functions but also confer p53 mutant proteins with oncogenic potential. The latter is achieved through so-called gain-of-function (GOF) mutations that promote cancer progression, metastasis, and therapy resistance by deregulating transcriptional networks, signaling pathways, metabolism, immune surveillance, and cellular compositions of the microenvironment. Despite recent progress in understanding the complexity of mutp53 in neoplastic development, the exact mechanisms of how mutp53 contributes to cancer development and how they escape proteasomal and lysosomal degradation remain only partially understood. In this review, we address recent findings in the field of oncogenic functions of mutp53 specifically regarding, but not limited to, its implications in metabolic pathways, the secretome of cancer cells, the cancer microenvironment, and the regulating scenarios of the aberrant proteasomal degradation. By analyzing proteasomal and lysosomal protein degradation, as well as its connection with autophagy, we propose new therapeutical approaches that aim to destabilize mutp53 proteins and deactivate its oncogenic functions, thereby providing a fundamental basis for further investigation and rational treatment approaches for TP53-mutated cancers.
Asunto(s)
Neoplasias , Proteolisis , Microambiente Tumoral , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Microambiente Tumoral/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Complejo de la Endopetidasa Proteasomal/genética , Autofagia/genética , Animales , Mutación , Lisosomas/metabolismo , Lisosomas/genética , Carcinogénesis/genética , Carcinogénesis/metabolismoRESUMEN
The inhibition of the unfolded protein response (UPR), which usually protects cancer cells from stress, may be exploited to potentiate the cytotoxic effect of drugs inducing ER stress. However, in this study, we found that ER stress and UPR activation by thapsigargin or tunicamycin promoted the lysosomal degradation of mutant (MUT) TP53 and that the inhibition of the UPR sensor ATF6, but not of ERN1/IRE1 or EIF2AK3/PERK, counteracted such an effect. ATF6 activation was indeed required to sustain the function of lysosomes, enabling the execution of chaperone-mediated autophagy (CMA) as well as of macroautophagy, processes involved in the degradation of MUT TP53 in stressed cancer cells. At the molecular level, by pharmacological and genetic approaches, we demonstrated that the inhibition of ATF6 correlated with the activation of MTOR and with TFEB and LAMP1 downregulation in thapsigargin-treated MUT TP53 carrying cells. We hypothesize that the rescue of MUT TP53 expression by ATF6 inhibition, could further activate MTOR and maintain lysosomal dysfunction, further inhibiting MUT TP53 degradation, in a vicious circle. The findings of this study suggest that the presence of MUT TP53, which often exerts oncogenic properties, should be considered before approaching treatments combining ER stressors with ATF6 inhibitors against cancer cells, while it could represent a promising strategy against cancer cells that harbor WT TP53.
Asunto(s)
Factor de Transcripción Activador 6 , Estrés del Retículo Endoplásmico , Lisosomas , Serina-Treonina Quinasas TOR , Tapsigargina , Proteína p53 Supresora de Tumor , Respuesta de Proteína Desplegada , Factor de Transcripción Activador 6/metabolismo , Factor de Transcripción Activador 6/genética , Lisosomas/metabolismo , Lisosomas/efectos de los fármacos , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Tapsigargina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética , Serina-Treonina Quinasas TOR/metabolismo , Autofagia Mediada por Chaperones/efectos de los fármacos , Autofagia Mediada por Chaperones/genética , Mutación/genética , Línea Celular Tumoral , Autofagia/efectos de los fármacos , Autofagia/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Tunicamicina/farmacología , Proteína 1 de la Membrana Asociada a los LisosomasRESUMEN
Epstein-Barr Virus (EBV) is associated with several types of human cancers, and changes in DNA methylation are reported to contribute to viral-driven carcinogenesis, particularly in cancers of epithelial origin. In a previous study, we demonstrated that EBV infects human primary colonic cells (HCoEpC) and replicates within these cells, leading to pro-inflammatory and pro-tumorigenic effects. Notably, these effects were mostly prevented by inhibiting viral replication with PAA. Interestingly, the EBV-induced effects correlated with the upregulation of DNMT1 and were counteracted by pretreating cells with 5-AZA, suggesting a role for DNA hypermethylation. Building on this background, the current study investigates the methylation changes induced by EBV infection in HCoEpC, both in the presence and absence of PAA, or ERK1/2 and STAT3 inhibitors, pathways known to be activated by EBV and involved in the dysregulation of methylation in tumor cells. The genome-wide methylation analysis conducted in this study allowed us to identify several biological processes and genes affected by these epigenetic changes, providing insights into the possible underlying mechanisms leading to the pathological effects induced by EBV. Specifically, we found that the virus induced significant methylation changes, with hypermethylation being more prevalent than hypomethylation. Several genes involved in embryogenesis, carcinogenesis, and inflammation were affected.
RESUMEN
Multiple myeloma (MM) and primary effusion lymphoma (PEL) are two aggressive hematologic cancers against which bortezomib and JQ-1, proteasome and bromodomain and extraterminal domain (BET) inhibitors, respectively, have been shown to have a certain success. However, the combination of both seems to be more promising than the single treatments against several cancers, including MM. Indeed, in the latter, proteasome inhibition upregulated nuclear respiratory factor 1 (NRF1), and such a prosurvival effect was counteracted by BET inhibitors. In the present study, we found that JQ-1/bortezomib induced a strong cytotoxic effect against PEL and discovered new insights into the cytotoxic mechanisms induced by such a drug combination in PEL and MM cells. In particular, a stronger c-Myc downregulation, leading to increased DNA damage, was observed in these cells after treatment with JQ-1/bortezomib than after treatment with the single drugs. Such an effect contributed to mechanistic target of rapamycin (mTOR)-phosphorylated eukaryotic translation initiation factor 4E-binding protein 1 (p-4EBP1) axis inhibition, also occurring through c-Myc downregulation. However, besides the prodeath effects, JQ-1/bortezomib activated unfolded protein response (UPR) and autophagy as prosurvival mechanisms. In conclusion, this study demonstrated that JQ-1/bortezomib combination could be a promising treatment for MM and PEL, unveiling new molecular mechanisms underlying its cytotoxic effect, and suggested that UPR and autophagy inhibition could be exploited to further potentiate the cytotoxicity of JQ-1/bortezomib.
Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Bortezomib/farmacología , Mieloma Múltiple/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal , Antineoplásicos/farmacología , Serina-Treonina Quinasas TOR , Línea Celular Tumoral , ApoptosisRESUMEN
PD-L1 is an immune checkpoint inhibitor, whose surface expression may be exploited by cancer cells to escape T cell-mediated immune recognition. PD-L1 expression and nuclear localization can be affected by epigenetic modifications, such as acetylation. In this study, we showed that VPA, a class I/IIa HDAC inhibitor, upregulated PD-L1 expression on the surface of pancreatic cancer cells. To this effect contributed the increased transcription, in correlation with histone acetylation of the PD-L1 gene and the acetylation of PD-L1 protein, which led to an increased interaction with TRAPPC4, molecule involved in PD-L1 recycling to the cell membrane. Interestingly, the BRD4 inhibitor JQ-1, counteracted PD-L1 transcription and reduced its surface expression, suggesting that such a combination could improve the outcome of VPA treatment, also because it increased the cytotoxic effect of VPA. Also considering that this HDACi did not upregulate PD-L2 and that the supernatant of VPA-treated cancer cells did not increase PD-L1 expression on the surface of macrophages exposed to it.
RESUMEN
NRF2 is a transcription factor that plays a pivotal role in carcinogenesis, also through the interaction with several pro-survival pathways. NRF2 controls the transcription of detoxification enzymes and a variety of other molecules impinging in several key biological processes. This perspective will focus on the complex interplay of NRF2 with STAT3, another transcription factor often aberrantly activated in cancer and driving tumorigenesis as well as immune suppression. Both NRF2 and STAT3 can be regulated by ER stress/UPR activation and their cross-talk influences and is influenced by autophagy and cytokines, contributing to shape the microenvironment, and both control the execution of DDR, also by regulating the expression of HSPs. Given the importance of these transcription factors, more investigations aimed at better elucidating the outcome of their networking could help to discover new and more efficacious strategies to fight cancer.
RESUMEN
IMPORTANCE: The novelty of this study lies in the fact that it shows that IRE1 alpha endoribonuclease inhibition by 4µ8C was able to counteract Epstein-Barr virus-driven lymphomagenesis in NOD SCID gamma mice and prevent B-cell immortalization in vitro, unveiling that this drug may be a promising therapeutic approach to reduce the risk of post-transplant lymphoproliferative disorders (PTLD) onset in immune-deficient patients. This hypothesis is further supported by the fact that 4µ8C impaired the survival of PTLD-like cells derived from mice, meaning that it could be helpful also in the case in which there is the possibility that these malignancies have begun to arise.
Asunto(s)
Infecciones por Virus de Epstein-Barr , Trastornos Linfoproliferativos , Proteínas Serina-Treonina Quinasas , Animales , Ratones , Endorribonucleasas , Herpesvirus Humano 4 , Trastornos Linfoproliferativos/terapia , Ratones SCID , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína 1 de Unión a la X-Box/antagonistas & inhibidores , Proteína 1 de Unión a la X-Box/metabolismoRESUMEN
Heat shock proteins (HSPs) are highly expressed in cancer cells and represent a promising target in anti-cancer therapy. In this study, we investigated for the first time the expression of high-molecular-weight HSP110, belonging to the HSP70 family of proteins, in Primary Effusion Lymphoma (PEL) and explored its role in their survival. This is a rare lymphoma associated with KSHV, for which an effective therapy remains to be discovered. The results obtained from this study suggest that targeting HSP110 could be a very promising strategy against PEL, as its silencing induced lysosomal membrane permeabilization, the cleavage of BID, caspase 8 activation, downregulated c-Myc, and strongly impaired the HR and NHEJ DNA repair pathways, leading to apoptotic cell death. Since chemical inhibitors of this HSP are not commercially available yet, this study encourages a more intense search in this direction in order to discover a new potential treatment that is effective against this and likely other B cell lymphomas that are known to overexpress HSP110.
RESUMEN
It has been shown that wild-type (wt)p53 inhibits oncogene c-Myc while mutant (mut)p53 may transactivate it, with an opposite behavior that frequently occurs in the crosstalk of wt or mutp53 with molecules/pathways promoting carcinogenesis. Even if it has been reported that mutp53 sustains c-Myc, whether c-Myc could in turn influence mutp53 expression remains to be investigated. In this study, we found that pharmacological or genetic inhibition of c-Myc downregulated mutp53, impaired cell survival and increased DNA damage in pancreatic cancer cells. At the molecular level, we observed that c-Myc inhibition reduced the expression of mevalonate kinase (MVK), a molecule belonging to the mevalonate pathway that-according to previous findings-can control mutp53 stability, and thus contributes to cancer cell survival. In conclusion, this study unveils another criminal alliance between oncogenes, such as c-Myc and mutp53, that plays a key role in oncogenesis.