RESUMEN
BackgroundMpox, caused by monkeypox virus (MPXV), was considered a rare zoonotic disease before May 2022, when a global epidemic of cases in non-endemic countries led to the declaration of a Public Health Emergency of International Concern. Cases of mpox in Ireland, a country without previous mpox reports, could reflect extended local transmission or multiple epidemiological introductions.AimTo elucidate the origins and molecular characteristics of MPXV circulating in Ireland between May 2022 and October 2023.MethodsWhole genome sequencing of MPXV from 75% of all Irish mpox cases (182/242) was performed and compared to sequences retrieved from public databases (n = 3,362). Bayesian approaches were used to infer divergence time between sequences from different subclades and evaluate putative importation events from other countries.ResultsOf 242 detected mpox cases, 99% were males (median age: 35 years; range: 15-60). All 182 analysed genomes were assigned to Clade IIb and, presence of 12 distinguishable subclades suggests multiple introductions into Ireland. Estimation of time to divergence of subclades further supports the hypothesis for multiple importation events from numerous countries, indicative of extended and sustained international spread of mpox. Further analysis of sequences revealed that 92% of nucleotide mutations were from cytosine to thymine (or from guanine to adenine), leading to a high number of non-synonymous mutations across subclades; mutations associated with tecovirimat resistance were not observed.ConclusionWe provide insights into the international transmission dynamics supporting multiple introductions of MPXV into Ireland. Such information supported the implementation of evidence-informed public health control measures.
Asunto(s)
Monkeypox virus , Mpox , Masculino , Humanos , Adulto , Femenino , Irlanda/epidemiología , Monkeypox virus/genética , Teorema de Bayes , Mpox/diagnóstico , Mpox/epidemiología , Brotes de EnfermedadesRESUMEN
BackgroundScarce European data in early 2021 suggested lower vaccine effectiveness (VE) against SARS-CoV-2 Omicron lineages than previous variants.AimWe aimed to estimate primary series (PS) and first booster VE against symptomatic BA.1/BA.2 infection and investigate potential biases.MethodsThis European test-negative multicentre study tested primary care patients with acute respiratory symptoms for SARS-CoV-2 in the BA.1/BA.2-dominant period. We estimated PS and booster VE among adults and adolescents (PS only) for all products combined and for Comirnaty alone, by time since vaccination, age and chronic condition. We investigated potential bias due to correlation between COVID-19 and influenza vaccination and explored effect modification and confounding by prior SARS-CoV-2 infection.ResultsAmong adults, PS VE was 37% (95%â¯CI: 24-47%) overall and 60% (95%â¯CI: 44-72%), 43% (95%â¯CI: 26-55%) and 29% (95%â¯CI: 13-43%) < 90, 90-179 and ≥ 180 days post vaccination, respectively. Booster VE was 42% (95%â¯CI: 32-51%) overall and 56% (95%â¯CI: 47-64%), 22% (95%â¯CI: 2-38%) and 3% (95%â¯CI: -78% to 48%), respectively. Primary series VE was similar among adolescents. Restricting analyses to Comirnaty had little impact. Vaccine effectiveness was higher among older adults. There was no signal of bias due to correlation between COVID-19 and influenza vaccination. Confounding by previous infection was low, but sample size precluded definite assessment of effect modification.ConclusionPrimary series and booster VE against symptomatic infection with BA.1/BA.2 ranged from 37% to 42%, with similar waning post vaccination. Comprehensive data on previous SARS-CoV-2 infection would help disentangle vaccine- and infection-induced immunity.
Asunto(s)
COVID-19 , Gripe Humana , Humanos , Adolescente , Anciano , Vacunas contra la COVID-19 , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Vacuna BNT162 , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Eficacia de las Vacunas , Europa (Continente)/epidemiología , Atención Primaria de SaludRESUMEN
Influenza A viruses circulated in Europe from September 2023 to January 2024, with influenza A(H1N1)pdm09 predominance. We provide interim 2023/24 influenza vaccine effectiveness (IVE) estimates from two European studies, covering 10 countries across primary care (EU-PC) and hospital (EU-H) settings. Interim IVE was higher against A(H1N1)pdm09 than A(H3N2): EU-PC influenza A(H1N1)pdm09 IVE was 53% (95%â¯CI:â¯41â¯toâ¯63) and 30% (95%â¯CI:â¯-3â¯toâ¯54) against influenza A(H3N2). For EU-H, these were 44% (95%â¯CI:â¯30â¯toâ¯55) and 14% (95%â¯CI:â¯-32â¯toâ¯43), respectively.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Humanos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Virus de la Influenza B , Subtipo H3N2 del Virus de la Influenza A , Vacunación , Estudios de Casos y Controles , Estaciones del Año , Hospitales , Atención Primaria de SaludRESUMEN
During April-July 2022, outbreaks of severe acute hepatitis of unknown etiology (SAHUE) were reported in 35 countries. Five percent of cases required liver transplantation, and 22 patients died. Viral metagenomic studies of clinical samples from SAHUE cases showed a correlation with human adenovirus F type 41 (HAdV-F41) and adeno-associated virus type 2 (AAV2). To explore the association between those DNA viruses and SAHUE in children in Ireland, we quantified HAdV-F41 and AAV2 in samples collected from a wastewater treatment plant serving 40% of Ireland's population. We noted a high correlation between HAdV-F41 and AAV2 circulation in the community and SAHUE clinical cases. Next-generation sequencing of the adenovirus hexon in wastewater demonstrated HAdV-F41 was the predominant HAdV type circulating. Our environmental analysis showed increased HAdV-F41 and AAV2 prevalence in the community during the SAHUE outbreak. Our findings highlight how wastewater sampling could aid in surveillance for respiratory adenovirus species.
Asunto(s)
Infecciones por Adenovirus Humanos , Adenovirus Humanos , Hepatitis , Infecciones del Sistema Respiratorio , Humanos , Niño , Aguas Residuales , Irlanda/epidemiología , Adenovirus Humanos/genética , Hepatitis/epidemiología , Brotes de Enfermedades , Enfermedad Aguda , Infecciones por Adenovirus Humanos/epidemiología , Filogenia , Infecciones del Sistema Respiratorio/epidemiologíaRESUMEN
BackgroundIn 2020, due to the COVID-19 pandemic, the European Centre for Disease Prevention and Control (ECDC) accelerated development of European-level severe acute respiratory infection (SARI) surveillance.AimWe aimed to establish SARI surveillance in one Irish hospital as part of a European network E-SARI-NET.MethodsWe used routine emergency department records to identify cases in one adult acute hospital. The SARI case definition was adapted from the ECDC clinical criteria for a possible COVID-19 case. Clinical data were collected using an online questionnaire. Cases were tested for SARS-CoV-2, influenza and respiratory syncytial virus (RSV), including whole genome sequencing (WGS) on SARS-CoV-2 RNA-positive samples and viral characterisation/sequencing on influenza RNA-positive samples. Descriptive analysis was conducted for SARI cases hospitalised between July 2021 and April 2022.ResultsOverall, we identified 437 SARI cases, the incidence ranged from two to 28 cases per week (0.7-9.2/100,000 hospital catchment population). Of 431 cases tested for SARS-CoV-2 RNA, 226 (52%) were positive. Of 349 (80%) cases tested for influenza and RSV RNA, 15 (4.3%) were positive for influenza and eight (2.3%) for RSV. Using WGS, we identified Delta- and Omicron-dominant periods. The resource-intensive nature of manual clinical data collection, specimen management and laboratory supply shortages for influenza and RSV testing were challenging.ConclusionWe successfully established SARI surveillance as part of E-SARI-NET. Expansion to additional sentinel sites is planned following formal evaluation of the existing system. SARI surveillance requires multidisciplinary collaboration, automated data collection where possible, and dedicated personnel resources, including for specimen management.
Asunto(s)
COVID-19 , Gripe Humana , Neumonía , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Adulto , Humanos , Lactante , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/epidemiología , Irlanda/epidemiología , Pandemias , ARN Viral/genética , Vigilancia de Guardia , COVID-19/epidemiología , SARS-CoV-2/genética , Hospitales , Neumonía/epidemiología , Infecciones por Virus Sincitial Respiratorio/diagnóstico , Infecciones por Virus Sincitial Respiratorio/epidemiologíaRESUMEN
Hepatitis E (HEV), a zoonotic virus, is the leading cause of acute viral hepatitis in Europe. The presence of HEV in domestic pigs can result in infections in humans through consumption of pork products which are undercooked or where processing methods are insufficient to inactivate the virus. In Ireland, pork accounts for 34 % of all meat consumption (CSO, 2022) and the prevalence of HEV in products at point of retail has not previously been characterised. A sampling strategy was designed in which high pork content sausages, fresh pork liver and raw fermented sausages were systematically purchased from three types of retailers between May 2018 and March 2019. In total, 200 pork products were tested using a lysing agent to release the HEV from the product for detection. RT-PCR for HEV was performed on samples with an extraction efficiency >1 % (n = 188/200) (94 %). Low level HEV RNA was detected in 9/188 (4.8 %) pork products tested. The highest incidence of HEV RNA was in pork liver where 6/25 (24 %) samples were positive. The concentration of HEV ranged from 0.02 - to 9.4 genome copies/g of pork. Based on these data an exposure assessment was performed which found that if consumers followed advice from the Food Safety Authority of Ireland to achieve core temperatures of 70 °C or higher when cooking, the risk was likely to be negligible.
Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Productos de la Carne , Carne de Cerdo , Carne Roja , Enfermedades de los Porcinos , Humanos , Animales , Porcinos , Hepatitis E/epidemiología , Virus de la Hepatitis E/genética , Productos de la Carne/análisis , Carne de Cerdo/análisis , Irlanda/epidemiología , Sus scrofa , ARN Viral/genética , ARN Viral/análisis , Enfermedades de los Porcinos/epidemiologíaRESUMEN
Background: Influenza A(H3N2) viruses dominated early in the 2022-2023 influenza season in Europe, followed by higher circulation of influenza A(H1N1)pdm09 and B viruses. The VEBIS primary care network estimated the influenza vaccine effectiveness (VE) using a multicentre test-negative study. Materials and Methods: Primary care practitioners collected information and specimens from patients consulting with acute respiratory infection. We measured VE against any influenza, influenza (sub)type and clade, by age group, by influenza vaccine target group and by time since vaccination, using logistic regression. Results: We included 38 058 patients, of which 3786 were influenza A(H3N2), 1548 influenza A(H1N1)pdm09 and 3275 influenza B cases. Against influenza A(H3N2), VE was 36% (95% CI: 25-45) among all ages and ranged between 30% and 52% by age group and target group. VE against influenza A(H3N2) clade 2b was 38% (95% CI: 25-49). Overall, VE against influenza A(H1N1)pdm09 was 46% (95% CI: 35-56) and ranged between 29% and 59% by age group and target group. VE against influenza A(H1N1)pdm09 clade 5a.2a was 56% (95% CI: 46-65) and 79% (95% CI: 64-88) against clade 5a.2a.1. VE against influenza B was 76% (95% CI: 70-81); overall, 84%, 72% and 71% were among 0-14-year-olds, 15-64-year-olds and those in the influenza vaccination target group, respectively. VE against influenza B with a position 197 mutation of the hemagglutinin (HA) gene was 79% (95% CI: 73-85) and 90% (95% CI: 85-94) without this mutation. Conclusion: The 2022-2023 end-of-season results from the VEBIS network at primary care level showed high VE among children and against influenza B, with lower VE against influenza A(H1N1)pdm09 and A(H3N2).
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Niño , Humanos , Europa (Continente)/epidemiología , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Atención Primaria de Salud , Eficacia de las Vacunas , Recién Nacido , Lactante , Preescolar , Adolescente , Adulto Joven , Adulto , Persona de Mediana EdadRESUMEN
Importance: In the context of emerging SARS-CoV-2 variants or lineages and new vaccines, it is key to accurately monitor COVID-19 vaccine effectiveness (CVE) to inform vaccination campaigns. Objective: To estimate the effectiveness of COVID-19 vaccines administered in autumn and winter 2022 to 2023 against symptomatic SARS-CoV-2 infection (with all circulating viruses and XBB lineage in particular) among people aged 60 years or older in Europe, and to compare different CVE approaches across the exposed and reference groups used. Design, Setting, and Participants: This case-control study obtained data from VEBIS (Vaccine Effectiveness, Burden and Impact Studies), a multicenter study that collects COVID-19 and influenza data from 11 European sites: Croatia; France; Germany; Hungary; Ireland; Portugal; the Netherlands; Romania; Spain, national; Spain, Navarre region; and Sweden. Participants were primary care patients aged 60 years or older with acute respiratory infection symptoms who were recruited at the 11 sites after the start of the COVID-19 vaccination campaign from September 2022 to August 2023. Cases and controls were defined as patients with positive and negative, respectively, reverse transcription-polymerase chain reaction (RT-PCR) test results. Exposures: The exposure was COVID-19 vaccination. The exposure group consisted of patients who received a COVID-19 vaccine during the autumn and winter 2022 to 2023 vaccination campaign and 14 days or more before symptom onset. Reference group included patients who were not vaccinated during or in the 6 months before the 2022 to 2023 campaign (seasonal CVE), those who were never vaccinated (absolute CVE), and those who were vaccinated with at least the primary series 6 months or more before the campaign (relative CVE). For relative CVE of second boosters, patients receiving their second booster during the campaign were compared with those receiving 1 booster 6 months or more before the campaign. Main Outcomes and Measures: The outcome was RT-PCR-confirmed, medically attended, symptomatic SARS-CoV-2 infection. Four CVE estimates were generated: seasonal, absolute, relative, and relative of second boosters. CVE was estimated using logistic regression, adjusting for study site, symptom onset date, age, chronic condition, and sex. Results: A total of 9308 primary care patients were included, with 1687 cases (1035 females; median [IQR] age, 71 [65-79] years) and 7621 controls (4619 females [61%]; median [IQR] age, 71 [65-78] years). Within 14 to 89 days after vaccination, seasonal CVE was 29% (95% CI, 14%-42%), absolute CVE was 39% (95% CI, 6%-60%), relative CVE was 31% (95% CI, 15% to 44%), and relative CVE of second boosters was 34% (95% CI, 18%-47%) against all SARS-CoV-2 variants. In the same interval, seasonal CVE was 44% (95% CI, -10% to 75%), absolute CVE was 52% (95% CI, -23% to 82%), relative CVE was 47% (95% CI, -8% to 77%), and relative CVE of second boosters was 46% (95% CI, -13% to 77%) during a period of high XBB circulation. Estimates decreased with time since vaccination, with no protection from 180 days after vaccination. Conclusions and Relevance: In this case-control study among older Europeans, all CVE approaches suggested that COVID-19 vaccines administered in autumn and winter 2022 to 2023 offered at least 3 months of protection against symptomatic, medically attended, laboratory-confirmed SARS-CoV-2 infection. The effectiveness of new COVID-19 vaccines against emerging SARS-CoV-2 variants should be continually monitored using CVE seasonal approaches.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , SARS-CoV-2 , Estaciones del Año , Eficacia de las Vacunas , Humanos , Anciano , COVID-19/prevención & control , COVID-19/epidemiología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/uso terapéutico , Femenino , Europa (Continente)/epidemiología , Masculino , SARS-CoV-2/inmunología , Persona de Mediana Edad , Estudios de Casos y Controles , Anciano de 80 o más Años , Vacunación/estadística & datos numéricos , Pueblo EuropeoRESUMEN
In autumn 2023, European vaccination campaigns predominantly administered XBB.1.5 vaccine. In a European multicentre study, we estimated 2023 COVID-19 vaccine effectiveness (VE) against laboratory-confirmed symptomatic infection at primary care level between September 2023 and January 2024. Using a test-negative case-control design, we estimated VE in the target group for COVID-19 vaccination overall and by time since vaccination. We included 1057 cases and 4397 controls. Vaccine effectiveness was 40 % (95 % CI: 26-53 %) overall, 48 % (95 % CI: 31-61 %) among those vaccinated < 6 weeks of onset and 29 % (95 % CI: 3-49 %) at 6-14 weeks. Our results suggest that COVID-19 vaccines administered to target groups during the autumn 2023 campaigns showed clinically significant effectiveness against laboratory-confirmed, medically attended symptomatic SARS-CoV-2 infection in the 3 months following vaccination. A longer study period will allow for further variant-specific COVID-19 VE estimates, better understanding decline in VE and informing booster administration policies.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Atención Primaria de Salud , SARS-CoV-2 , Eficacia de las Vacunas , Humanos , COVID-19/prevención & control , COVID-19/epidemiología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Europa (Continente)/epidemiología , Femenino , Masculino , Persona de Mediana Edad , Adulto , SARS-CoV-2/inmunología , Estudios de Casos y Controles , Anciano , Adulto Joven , Adolescente , Vacunación/métodos , Vacunación/estadística & datos numéricos , Programas de InmunizaciónRESUMEN
Soft fruits are at particular risk of contamination with enteric viruses such as Hepatitis A virus (HAV), Hepatitis E Virus (HEV), Norovirus (NoV), Human Adenovirus (HAdV) and Sapovirus (SaV). The aim of this study was to investigate, for the first time, the presence of these biological agents in ready to eat (RTE) berries at point of retail in Ireland. A sampling strategy was designed in which RTE fresh and frozen strawberries and raspberries were purchased from five retailers between May and October 2018. Reverse Transcriptase Polymerase Chain Reaction (RT-qPCR) assays for HEV RNA, Nov RNA, SaV RNA, and human Adenovirus species F DNA (HAdV-F) were performed on 239 samples (25g portions). Viral nucleic acid was present in 6.7% (n = 16) of samples tested as follows: HAV RNA (n = 5), HAdV-F DNA (n = 5), HEV RNA (n = 3) and NoV GII RNA (n = 3). Sapovirus RNA was not detected in any product. No significant differences were found between berry type, fresh/frozen status, or supermarket source. This study suggests a risk that exists across all retail outlets however only low levels of nucleic acid ranging from 0 to 16 genome copies/g were present. Although these findings may reflect non-viable/non-infectious virus the continued provision of risk mitigation advice to consumers is warranted and further work is required to ensure control measures to reduce contamination are implemented and enforced.
Asunto(s)
Adenovirus Humanos , Virus de la Hepatitis A , Hepatitis A , Hepatitis E , Norovirus , Ácidos Nucleicos , Humanos , Adenovirus Humanos/genética , Frutas , Microbiología de Alimentos , Irlanda , Norovirus/genética , Virus de la Hepatitis A/genética , ARN Viral/genética , ARN Viral/análisis , ADN , Contaminación de Alimentos/análisisRESUMEN
SARS-CoV-2 RNA quantification in wastewater is an important tool for monitoring the prevalence of COVID-19 disease on a community scale which complements case-based surveillance systems. As novel variants of concern (VOCs) emerge there is also a need to identify the primary circulating variants in a community, accomplished to date by sequencing clinical samples. Quantifying variants in wastewater offers a cost-effective means to augment these sequencing efforts. In this study, SARS-CoV-2 N1 RNA concentrations and daily loadings were determined and compared to case-based data collected as part of a national surveillance programme to determine the validity of wastewater surveillance to monitor infection spread in the greater Dublin area. Further, sequencing of clinical samples was conducted to determine the primary SARS-CoV-2 lineages circulating in Dublin. Finally, digital PCR was employed to determine whether SARS-CoV-2 VOCs, Alpha and Delta, were quantifiable from wastewater. No lead or lag time was observed between SARS-CoV-2 wastewater and case-based data and SARS-CoV-2 trends in Dublin wastewater significantly correlated with the notification of confirmed cases through case-based surveillance preceding collection with a 5-day average. This demonstrates that viral RNA in Dublin's wastewater mirrors the spread of infection in the community. Clinical sequence data demonstrated that increased COVID-19 cases during Ireland's third wave coincided with the introduction of the Alpha variant, while the fourth wave coincided with increased prevalence of the Delta variant. Interestingly, the Alpha variant was detected in Dublin wastewater prior to the first genome being sequenced from clinical samples, while the Delta variant was identified at the same time in clinical and wastewater samples. This work demonstrates the validity of wastewater surveillance for monitoring SARS-CoV-2 infections and also highlights its effectiveness in identifying circulating variants which may prove useful when sequencing capacity is limited.
Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , Humanos , Irlanda/epidemiología , ARN Viral , SARS-CoV-2/genética , Aguas Residuales/análisis , Monitoreo Epidemiológico Basado en Aguas ResidualesRESUMEN
Neuraminidase inhibitor (NAI) resistance levels globally are currently low. However, as antivirals are increasingly being used, and even in the absence of selective pressure, resistance may increase or emerge. The neuraminidase (NA) genes from influenza viruses from the Irish 2018/2019 season were sequenced: 1/144 (0.7 %) A(H1N1)pdm09 sequences harboured a substitution associated with highly-reduced susceptibility to NAIs. The very low NAI resistance we describe supports current Irish NAI use recommendations. However, continued monitoring is essential. NA characterisation also identified substitutions associated with reduced antibody effectiveness, thereby highlighting the potential of NA sequence surveillance as an additional tool for investigating influenza vaccine effectiveness (VE).
Asunto(s)
Farmacorresistencia Viral , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Antivirales/farmacología , Antivirales/uso terapéutico , Farmacorresistencia Viral/genética , Inhibidores Enzimáticos/farmacología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico , Gripe Humana/epidemiología , Irlanda , Mutación , Neuraminidasa/genética , Oseltamivir/uso terapéutico , Estaciones del AñoRESUMEN
We report here the first near-complete genome sequence (7,463 nucleotides) of a human sapovirus GI.2 variant from Dublin, Ireland, detected in an adult with gastroenteritis in 2016.