Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Open Biol ; 14(7): 240051, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39045857

RESUMEN

Maintaining proper circadian rhythms is essential for coordinating biological functions in mammals. This study investigates the effects of daily arrhythmicity using Bmal1-knockout (KO) mice as a model, aiming to understand behavioural and motivational implications. By employing a new mathematical analysis based on entropy divergence, we identified disrupted intricate activity patterns in mice derived by the complete absence of BMAL1 and quantified the difference regarding the activity oscillation's complexity. Changes in locomotor activity coincided with disturbances in circadian gene expression patterns. Additionally, we found a dysregulated gene expression profile particularly in brain nuclei like the ventral striatum, impacting genes related to reward and motivation. Further investigation revealed that arrhythmic mice exhibited heightened motivation for food and water rewards, indicating a link between circadian disruptions and the reward system. This research sheds light on how circadian clock alterations impact the gene expression regulating the reward system and how this, in turn, can lead to altered seeking behaviour and motivation for natural rewards. In summary, the present study contributes to our understanding of how reward processing is under the regulation of circadian clock machinery.


Asunto(s)
Factores de Transcripción ARNTL , Ritmo Circadiano , Ratones Noqueados , Motivación , Animales , Factores de Transcripción ARNTL/metabolismo , Factores de Transcripción ARNTL/genética , Ratones , Regulación de la Expresión Génica , Relojes Circadianos/genética , Recompensa , Masculino , Perfilación de la Expresión Génica , Conducta Animal , Locomoción , Transcriptoma
2.
Sci Rep ; 13(1): 18229, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880305

RESUMEN

A single dose of cocaine abolishes endocannabinoid-mediated long-term depression (eCB-LTD) in the nucleus accumbens (NAc) within 24 h of administration. However, it is uncertain whether this altered neuroplasticity entails a behavioral deficit. As previously reported, after a single dose of cocaine (20 mg/kg), mice displayed impaired eCB-LTD in the NAc. Such cocaine-induced neuroplastic impairment was accompanied by an altered preference for saccharin and social interactions and a reduction in mRNA levels of the anandamide-catabolizing enzyme NAPE-PLD. The pharmacological increase of anandamide through the fatty acid amide hydrolase (FAAH) inhibitor URB597 (1 mg/kg) reversed the cocaine-induced loss of eCB-LTD in the NAc and restored normal social interaction in cocaine-exposed mice, but it did not affect saccharin preference. Overall, this research underlines the neuroplastic and behavioral alterations occurring after the initial use of cocaine and suggests a potential role for anandamide.


Asunto(s)
Cocaína , Depresión Sináptica a Largo Plazo , Animales , Ratones , Amidohidrolasas/genética , Cocaína/farmacología , Endocannabinoides , Sacarina , Depresión Sináptica a Largo Plazo/efectos de los fármacos
3.
Biomed Pharmacother ; 148: 112708, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35168076

RESUMEN

Cocaine is a highly consumed drug worldwide which directly targets brain areas involved in reinforcement processing and motivation. Cannabidiol is a phytocannabinoid that exerts protecting effects upon cocaine-induced addictive behavior, although many questions about the mechanisms of action and the specific affected processes remain unknown. Moreover, its effects on cue-induced cocaine-craving incubation have never been addressed. The present study aimed to assess the effects of cannabidiol (20 mg/kg, i.p.) administered during the acquisition of cocaine self-administration (0.75 mg/kg/infusion) and demand task or during cocaine abstinence and craving. Moreover, we measured the alterations in expression of AMPAR subunits and ERK1/2 phosphorylation due to cannabidiol treatment or cocaine withdrawal. Our results showed that cannabidiol reduced cocaine intake when administered during the acquisition phase of the self-administration paradigm, increased behavioral elasticity and reduced motivation for cocaine in a demand task. Cannabidiol also reduced GluA1/2 ratio and increased ERK1/2 phosphorylation in amygdala. No effects over cocaine-craving incubation were found when cannabidiol was administered during abstinence. Furthermore, cocaine withdrawal induced changes in GluA1 and GluA2 protein levels in the prelimbic cortex, ventral striatum and amygdala, as well as a decrease in ERK1/2 phosphorylation in ventral striatum. Taken together, our results show that cannabidiol exerts beneficial effects attenuating the acquisition of cocaine self-administration, in which an operant learning process is required. However, cannabidiol does not affect cocaine abstinence and craving.


Asunto(s)
Cannabidiol , Cocaína , Animales , Cannabidiol/farmacología , Cocaína/metabolismo , Cocaína/farmacología , Ansia , Economía del Comportamiento , Ratones , Motivación , Núcleo Accumbens
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda